
©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	and	proprietary	information.	All	rights	reserved.	

Faster,	Richer,	Fully	Customizable	Data	
from	Programmable	Blockchains	

Thomas	Jay	Rush	

http://quickblocks.io	

January	28,	2017	

Revised:	July	24,	2017	

	

A	software	system,	QuickBlocks™,	is	described	that	provides	user-focused,	

speed-optimized,	 customizable	 per-smart-contract	 data	 from	 any	

blockchain,	 including	 public,	 consortia,	 and	 private	 chains.	 Through	 a	

collection	of	 software	 libraries,	 applications,	 and	automatically-generated	

source	 code,	 the	 system	 improves	 the	 quality	 and	 accessibility	 of	

blockchain	 data	 to	 programmers	 and	 end	 users.	 	 Given	 this	 improved	

accessibility,	 many	 previously	 unanticipated	 functionalities,	 such	 as	 fast	

delivery	of	smart-contract	specific	JSON	data	from	RPC,	detailed	gas-usage	

analysis,	 live	 debugging	 and	 stress	 testing	 from	 previously	 recorded	

blockchain	 interactions,	 smart-contract	 control	 panels,	 and	 user-local,	

data-rich,	 fully-decentralized	 desktop	 and	 mobile	 applications	 become	

possible.	Keywords:	blockchain,	Ethereum,	data	analytics,	finTech	
	
	
	
	

Introduction	

Distributed.	 Consensus-driven.	 Immut-

able.		Ledger	of	transactions.	

These	 four	 phrases,	when	 combined	 into	

a	technology	called	the	blockchain,	hold	great	

promise	to	alter	 the	 future	of	computing	and	

perhaps	the	world.	

In	the	context	of	a	blockchain,	the	phrase,	

“ledger	of	transactions”	means	an	accounting	

ledger	 or	 business	 information	 system,	 each	

transaction	 in	 the	 ledger	 consisting	 of	 a	

spender,	 a	 recipient,	 a	 timestamp,	 and	 a	

value.	 The	word	 “distributed”	 in	 this	 context	

means	 that	 each	 participant	 maintains	

his/her	 own	 duplicate	 copy	 of	 the	 ledger1.	

The	 phrase	 “consensus-driven”	 refers	 to	 the	

fact	 that	 a	 majority	 of	 participants,	 prior	 to	

writing	to	the	ledger,	must	agree	on	what	will	

																																								 																					
1	That	 is,	 the	 participant’s	 software	 (called	 a	 node	 or	

client)	maintains	the	ledger.	

be	 written2.	 “Immutable”	 refers	 to	 the	 fact	

that	once	the	ledger	entry	is	consented	to,	it	is	

nearly	 impossible	 for	a	 single	participant	 (or	

group	of	participants)	to	alter	the	ledger.	

Consider	 how	 the	 world	 will	 change,	

when	 humans	 possess	 a	 shared,	 unalterable	

history	of	our	own	actions.	

At	 the	 heart	 of	 this	 amazing	 system	 is	

data,	 and	 one	 of	 the	 great	 promises	 of	 the	

blockchain—if	it	can	be	realized—is	that	each	

participant	has	access	to	their	individual	data.	

It	 is	our	belief,	however,	 that	 this	data	 is	not	

as	easily	accessible	as	it	should	be,	especially	

for	 the	 less	 technical	 among	 us.	 Nor	 is	 the	

data	presented	 in	as	rich	a	 format	or	with	as	

deep	 a	 content	 as	 it	 might	 be.	 Nor	 is	 it	

available,	 in	 its	 current	 implementations,	 at	

speed.	

Our	project	aims	to	remedy	each	of	these	

shortcomings.	

																																								 																					
2 	Ignoring	 for	 a	 moment	 possible	 forks,	 which	 is	

discussed	below.	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

2	

	

The	primary	component	of	a	blockchain	is	

the	 node	 or	 client.	 A	 blockchain	 client	 is	 a	

piece	 of	 networking	 software	 that	 runs	

identically	 and	 simultaneously	 on	 many	

computers	 at	 the	 same	 time.	 Nodes	

continually	 broadcast	 transactions	 to	 other	

nodes	 on	 the	 network	 and	 listen	 for	

transactions	 from	 other	 nodes.	 Competing	

with	 each	 other	 to	 be	 the	 first	 to	 identify	 a	

suitably	 difficult-to-find	 stochastically-

generated	solution	to	a	cryptographic	puzzle,	

the	winning	node	constructs	a	block	(using	a	

recent	 collection	 of	 transactions)	 and,	 once	

consensus	 is	 reached,	 is	 rewarded	 with	 a	

newly	created	‘coin’	or	‘coins’	of	then-current	

value.	

Additionally,	 the	 winner	 of	 the	 block	

receives	the	accumulated	transaction	costs	of	

the	 approved	 transactions.	 (These	 costs	 are	

called	‘gas’	below.)	

It	is	this	potential	return	on	investment	of	

a	 node’s	 computing	 resources	 (block	 reward	

+	 gas)	 that	 incentivizes	 participants	 to	 both	

continue	 to	 participate	 and	 participate	

honestly.	 A	 dishonest	 action	 is	 assumed	 to	

lessen	 the	 value	 of	 any	 previously	

accumulated	 rewards,	 and	 therefore	

dishonesty	becomes	increasingly	less	likely	as	

the	value	of	the	‘coin’	increases.	

In	 addition	 to	 providing	 “accounting	

services”	 in	 the	 form	 of	 block	 creation,	 each	

node	provides	an	interface	to	its	own	copy	of	

the	 blockchain	 data.	 This	 interface	 is	

provided	 either	 through	 RPC	 (remote	

procedure	 calls)	 or	 IPC	 (inter-process	

communication),	 each	 of	 which	 allow	 other	

software	 components	 to	 retrieve	 data	 from	

the	ledger.	

It	 is	 our	 opinion	 that	 these	 interfaces,	 in	

their	current	manifestation,	are	inadequate.	

The	 RPC	 and	 IPC	 interfaces3	expose	 the	

blockchain’s	data	at	a	level	that,	we	believe,	is	

too	 close	 to	 the	 internal	 workings	 of	 the	

blockchain.	

																																								 																					
3	Throughout	the	remainder	of	this	document,	we	refer	

only	 to	 the	 RPC	 interface.	 The	 reader	 should	 consider	

that	in	all	cases,	IPC,	could	be	used	as	well.	

This	 makes	 it	 difficult	 for	 users	 of	 the	

system	 to	 effectively	 process	 the	 received	

data.	The	RPC	 interface	 furthermore	delivers	

this	 inadequate	data	 in	 a	 piece-meal	 fashion.	

The	 meaning	 of	 particular	 portions	 of	 the	

data	 is	 dependent	 on	 the	 contents	 of	 other	

portions,	requiring	multiple	calls	through	the	

interface	 to	 fully	 determine	 the	 validity	 and	

meaning	of	each	transaction.	

The	 node’s	 communication	 interfaces	

provide	 functionality	 for	 retrieving	 blocks,	

transactions,	 receipts,	 traces,	 account	

balances,	 and	 other	 highly-specific	 data	 such	

as	mining	 information,	block	and	 transaction	

hashes,	and,	importantly,	the	ability	to	create,	

sign,	 and	 initiate	 transactions.	 These	 latter	

functionalities	 are	 not	 of	 interest	 to	 our	

system.	 Our	 system	 is	 concerned	 only	 with	

retrieving	 blocks,	 transactions,	 receipts,	

traces,	and	logs.	

It	 is	 our	 belief	 that	 most	 users	 of	 the	

blockchain	 data,	 ranging	 from	 systems	

architects,	 software	 developers,	 all	 the	 way	

down	 to	 end	 users	with	 individual	 accounts,	

are	 interested	 not	 in	 blockchain	 specific	

formats,	 but	 in	 data	 customized	 and	

optimized	for	their	particular	use.	

In	other	words,	regular	human	beings	are	

interested	 in	 their	 own	 account	 data,	 not	 in	

blocks,	 not	 in	 hashes,	 and	 certainly	 not	 in	

mining	 data.	 This	 interest	 extends	 to	 both	

participants	 in,	 and	 purveyors	 of,	 smart	

contracts.	

This	 document	 describes	 QuickBlocks™,	

our	 system	 for	 providing	 customized,	 per-

account	access	to	a	richer	and	more	useful	set	

of	blockchain	data	at	speed.	

A	Quick	Note	on	Blockchains	

While	 the	 development	 of	 our	 code	 has	

been	heavily	focused	on	the	public	Ethereum	

blockchain	 [1][2],	 we	 believe,	 given	 the	

similarity	 of	 all	 blockchains,	 that	 providing	

improved	 speed	 and	 data	 quality	 for	 other	

blockchains	 will	 be	 a	 relatively	 simple	

extension.	 While	 what	 we	 discuss	 below	 is	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

3	

Ethereum-centric,	the	reader	should	be	aware	

that	 our	 code	 is	 intended	 to	 work	 with	 any	

blockchain,	both	public	and	private.	

Architectural	Overview	

QuickBlocks™	 consists	 of	 three	 primary	

types	 of	 components:	 libraries,	 tools,	 and	

applications.	

	
Libraries	

The	 first	 type	of	component	are	software	

libraries	 which	 organize	 reusable	 code	 by	

functionality.	 QuickBlocks™	 contains	 six	 pre-

compiled	 libraries	 (utillib,	 abilib,	
etherlib,	 acctlib,	 tokenlib,	 and	

walletlib)	 and	 an	 arbitrary	 number	 of	
automatically-generated	 customizable,	 per-

smart-contact	libraries	discussed	below.	

The	most	basic	 functionality	 is	 contained	

in	 a	 library	 called	 utillib.	 This	 library	
consists	 of	 software	 code	 for	 carrying	 out	

common	 functions	 such	 as	 string	 and	 time	

manipulation;	 concurrency-protected	 data	

access;	 container	 classes	 such	as	 lists,	 arrays	

and	maps;	and	other	utility	functionality.	

The	 second	 library	 component	 is	 called	

abilib.	 This	 library	 allows	 for	 reading,	
writing,	 and	 manipulation	 of	 application	

binary	 interface	 (ABI)	 files.	 ABI	 files,	

produced	 by	 the	 Solidity	 compiler,	 contain	

the	 information	 necessary	 to	 describe	

interfaces	 to	 Ethereum	 smart	 contracts.	 It	 is	

this	 library	 that	 allows	 QuickBlocks™	 to	

automatically	 generate	 customized	 per-

smart-contract	libraries.	

The	 third	 library	 component	 of	

QuickBlocks™	 is	 called	 etherlib.	 This	
library	 mirrors	 the	 blocks,	 transactions,	

receipts,	 traces,	 and	 accounts	 found	 in	 the	

blockchain	 data.	 It	 is	 in	 the	 etherlib	 that	
we	 interact	 directly	 with	 the	 blockchain	 via	

RPC.	 We	 do	 this	 in	 order	 to	 collect	 raw	

blockchain	data,	which	is	then	enhanced	so	as	

to	 provide	 more	 useful	 data	 to	 higher-level	

components	 such	 as	 the	 tokenlib;	 the	

customized,	per-smart-contract	libraries;	and	

the	various	applications.	

It	 is	 the	 job	 of	 etherlib	 to	 provide	
faster	 access	 to	 the	 data,	 and	 many	 speed	

optimizations,	 in	 addition	 to	 a	 collection	 of	

easy-to-use	 interfaces	 for	 traversing	 the	

blocks,	 transactions,	 and	 accounts,	 are	

contained	in	this	library.	

A	 small	 library	 called	acctlib	 provides	
the	ability	to	store	per	account	data	in	a	fast-

insert,	fast-search	16-way	tree	data	structure	

keyed	 by	 account	 address.	 This	 library	 is	

currently	in	experimental	status.	

The	 final	 two	 pre-compiled	 libraries	 are	

called	 tokenlib	 and	 walletlib,	 which	
implement	support	 for	 the	Ethereum	ERC	20	

token	standard	and	popular	multi-sig	wallets.	

These	libraries	are	described	further	below.	

	

Built	 upon	 these	 six	 libraries	 are	

automatically-generated,	 customizable,	 per-

smart-contract	 libraries.	 The	 automatic	

generation	of	C++	code	 is	accomplished	with	

two	 co-operating	 applications	 called	

grabABI	 and	 makeClass,	 each	 described	
further	below.	

Customized	 per-smart-contract	 libraries	

are	 collections	 of	 C++	 code,	 along	 with	 an	

automatically	 generated	 make-based	 build	

system,	 that	 allows	 QuickBlocks™	 to	

“promote”	generic	blockchain	transactions	to	

smart-contract	 specific	 C++	 classes	 aware	 of	

and	capable	of	exporting	their	own	data.	

Additionally,	 these	 per-smart-contract	

specific	C++	classes	allow	the	programmer	to	

make	 a	 smart	 contract’s	 functional	

transactions	 and	 events	 available	 to	 other	

software	 components	 such	 as	 automated	

testing,	analytics,	or	debugging	applications.	

An	example	of	this	functionality	might	be	

the	 delivery	 of	 the	 token	 standard	

transferFrom(from,	 to,	 amount)	 function,	 not	
as	 a	 generic	 RPC	 transaction,	 wherein	 the	

parameters	of	 the	 function	call	are	 “trapped”	

inside	 a	 difficult	 to	 understand,	 and	 even	

more	 difficult	 to	 parse,	 input	 data	 field	 (i.e.	

0xa9059cbb000000000000000000000000de

56d176c07a3b3776dfba86cbf…),	 but	 as	 fully	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

4	

parsed	JSON	data	exposing	the	values	directly	

of	the	from,	to,	and	amount	parameters.	
tokenlib,	 which	 abstracts	 the	

Ethereum	 token	 standard,	 extracts	 the	 data	

and	 stores	 it	 in	 the	 CTransfer	 C++	 class.	
This	class,	by	virtue	of	being	derived	from	the	

underlying	 classes	 in	 the	 etherlib	 and	
utillib	 libraries,	 possesses	 the	 ability	 to	
both	 serialize	 itself	 for	 later	 retrieval	 and	

generate	rich	JSON	data	fully	produced	on	the	

fly.	

	

Tools	
Mostly	 as	 a	method	 by	which	 to	 test	 the	

various	 libraries,	 we’ve	 created	 a	 series	 of	

tools	designed	to	give	direct	access	to	each	of	

the	 various	 data	 structures	 found	 in	 the	

Ethereum	blockchain.	

For	 example,	 we’ve	 written	 tools	 to	

retrieve	 data	 at	 the	 block	 level,	 the	

transaction	 level,	 the	 transaction	 receipt	

level,	 the	 transaction	 log	 level,	 and	 even	 as	

deeply	 down	 into	 the	 guts	 of	 the	 blockchain	

to	retrieve	the	transaction	trace	data.	

At	each	level,	the	end	user	may	include	all	

levels	 below	 that	 level	 as	well.	 For	 example,	

the	 user	may	 request	 to	 include	 all	 traces	 in	

the	transaction	request.	

We	 propose	 to	 release	 the	 libraries	 and	

the	 various	 tools	 to	 open	 source.	 Tools	 are	

described	more	fully	below.	

	

Applications	
In	 addition	 to	 library	 code	 and	 tools,	 the	

QuickBlocks™	 system	delivers	 a	 collection	 of	

applications.	 Each	 of	 the	 applications	 is	

described	 in	 its	 own	 section	 below.	

Applications	 pull	 together	 various	

functionality	 provided	 by	 the	 libraries	 to	

accomplish	particular	tasks.	

For	 example,	 one	 application,	 called	

blockScrape,	distinguishes	between	blocks	
that	 contain	 one	 or	 more	 transactions	 and	

blocks	that	do	not.	Another	application,	called	

miniBlocks,	 separates	 user-focused	

portions	 of	 the	 data	 (such	 as	 from,	 to,	
amount)	from	blockchain-focused	parts	of	the	
data	 (such	 as	 block	 and	 transaction	 hashes,	

mining	rewards,	etc.).	By	partitioning	the	data	

into	 user-focused	 and	 non-user-focused	

portions	 and	 eliminating	 blocks	 that	 contain	

no	 transactions	 (and	 therefore	 are	 not	 of	

interest	 to	 some	 applications),	 the	 system	 is	

able	to	greatly	increase	the	speed	with	which	

it	 can	 analyze,	 deliver,	 and	 interact	with	 the	

data.	

	

In	 the	 following	sections,	we	 first	discuss	

two	 of	 the	 primary,	 building-block	

applications	of	our	system	called	makeClass	
and	 grabABI.	 After	 this,	 we	 discuss	 each	
individual	 library	 component.	Thereafter,	we	

discuss	 the	 various	 tools	 and	 application	

components.	Following	this	we	discuss	a	 few	

potential	 future	 use	 cases	 that	 we’ve	

envisioned.	 We	 conclude	 our	 paper	 by	

speculating	on	a	few	unexpected	implications	

of	 our	work	 and	 a	 brief	 discussion	 of	 future	

issues	of	concern.	

makeClass	and	grabABI	

Before	 discussing	 the	 various	 libraries	

and	 applications,	 we	 discuss	 two	 particular	

applications	 that	 are	 central	 to	 operation	 of	

the	 system.	 Without	 these	 applications,	

creation	 of	 much	 of	 the	 QuickBlocks™	 code	

would	not	have	been	possible.	Neither	would	

the	 creation	 of	 per-smart-contract	 parsing	

libraries	from	ABI—one	of	the	unique	ideas	of	

the	system—be	possible.	

makeClass	 is	 a	 code	 generation	 tool	 of	
our	 own	 devising.	 Given	 two	 template	 files	

(one	 for	 the	 C++	 header	 file	 and	 one	 for	 the	

C++	implementation	file4)	and	a	configuration	

file	 described	 in	 Appendix	 A,	makeClass	 is	
able	 to	 generate	 fully	 functional	 software	

code	 that	 supports	 dynamic	 self-creation;	

serialization;	 file	 import	 from	 common	

formats	 including	 JSON;	 and	 importantly	 the	

ability	 to	 export	 arbitrary	 data	 formats	

including	 JSON,	 tab-delimited	 text,	 and	

comma-separated	values.	Furthermore,	we’ve	

																																								 																					
4	Nothing	precludes	makeClass	from	generating	code	for	

other	programming	languages.	One	would	simply	have	

to	create	template	files	for	that	language.	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

5	

recently	 implemented	 direct	 injection	 of	 the	

output	of	our	system	into	arbitrary	databases.	

All	 three	 of	 the	 classes	 in	 the	 abilib	
(CAbi,	 CFunction,	 CParameter)	 were	
created	 with	 makeClass,	 as	 were	 CBlock,	
CTransaction,	 CReceipt,	 CLogEntry,	
CTrace,	 CStructLog,	 CPriceQuote,
CAccount,	and	CRPCResult	in	etherlib.	

The	entirety	of	the	tokenlib	library	was	
created	automatically	using	makeClass	 and	
grabABI.	 For	 this	 library,	unlike	 the	 classes	
mentioned	 above,	 all	 of	 which	 are	 derived	

from	 CBaseNode,	 six	 of	 the	 nine	 classes	 in	
tokenlib	 (CDefaultFunc,	 CTransfer,	
CTransferFrom,	 CApprove,	 CCreate-
TokenProxy,	CUnknown)	 are	 derived	 from	
the	 etherlib	 class	 CTransaction,	 while	
three	 of	 the	 classes	 are	 derived	 from	 the	

etherlib	 class	CLogEntry	 (CApproval-
Event,	 CTransferEvent,	 CCreated-
TokenEvent, CMintEvent).	

This	 ability	 to	 derive	 classes	 from	 base	

classes	 is	 what	 allows	 us	 to	 “promote”	 the	

blockchain	 data	 into	 full	 fledged	 self-aware	

classes	 in	 their	 own	 right.	 Classes	 that	 can	

export	 fully	 customized	 data	 given	 generic	

transactions	 and	 events	 on	 the	 blockchain.	

This	capability	is	at	the	core	of	our	idea.	

All	 classes	 in	 each	 per-smart-contract	

library	 are	 created	 automatically	 by	

makeClass.	 In	 order	 to	 generate	 these	
classes,	 we	 use	 another	 of	 our	 applications	

called	 grabABI	 and	 its	 --generate	
function.	

grabABI	 reads	 the	 ABI	 file	 for	 a	
particular	smart	contract	either	from	its	local	

cache	(because	it’s	been	encountered	before)	

or	 from	 a	web	API	 such	 as	 that	 provided	 by	

http://etherscan.io.	

Given	 an	 ABI	 file,	 grabABI,	 which	
normally	simply	prints	the	ABI	to	the	screen,	

generates—not	 the	 code	 for	 the	 per-smart-

contract	libraries—but	the	configuration	files	

for	 the	 makeClass	 application	 which	

subsequently	generates	the	code.	

This	 additional	 level	 of	 abstraction	 (i.e.	

code	 generation	 directly	 from	 a	 smart	

contract’s	ABI)	 is	 further	to	the	very	heart	of	

our	idea.	

The	 code	 generated	 by	 makeClass,	
includes	 hooks	 and	 extensibility	 provisions	

we	 call	 //EXISTING_CODE,	 which	 may	 be	
used	 to	 surround	 existing	 programmer-

customized	 code	 inside	 each	 automatically	

generated	file.	This	allows	the	programmer	to	

both	 automatically	 generate	 the	 majority	 of	

the	code	for	a	particular	class	and	at	the	same	

time	customize	the	code	to	whatever	extent	is	

deemed	necessary	for	his/her	application.	

Next,	we	describe	in	greater	detail	each	of	

the	 three	 major	 groups	 of	 work:	 libraries,	

tools,	and	applications.	

Libraries	

The	following	section	describes,	 in	detail,	

each	 of	 the	 six	 library	 components	 and	

introduces	 the	 idea	 of	 per-smart-contract	

customized	 libraries.	 Per-smart-contract	

libraries	 are	 further	 explored	 in	 the	

application	 section	 of	 the	 paper	 under	 the	

grabABI	 sub-section,	 particularly	 as	 it	
relates	to	the	--generate	option.	

	

Utillib	Library	
We	 call	 the	 first	 of	 the	 six	 libraries	

utillib.	 The	 utillib	 library	 provides	
support	 routines	 that	 one	 will	 find	 in	 most	

utility	libraries,	such	as	support	for	basic	data	

types	including	unsigned	and	signed	integers,	

floats	and	doubles;	big	number	support;	time	

and	 date	 support;	 support	 for	 manipulating,	

searching,	 and	 processing	 strings;	 various	

collection	 types	 such	 as	 arrays,	 lists,	 and	

maps;	 runtime	 typing;	 serialization;	 and	 a	

proprietary	 technology	 known	 as	 display	

strings	(as	described	in	Appendix	B).	

Additionally,	 support	 for	 concurrency	

protected	 file	 access;	 screen,	 file,	 and	 string	

export	 and	 import	 functionality;	 various	

operating-system	 specific	 file	 and	 folder	

manipulations;	 configuration	 file	 support;	

command	 line	 parsing	 and	 options	 support,	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

6	

and	 finally	 performance	 timing	 support	 is	

provided.	

Many	of	these	functions	are	now	available	

in	 the	 standard	 C++	 libraries,	 and	 therefore	

much	of	the	code	in	utillib	will,	over	time,	
be	 removed.	 Primary	 among	 this	 soon-to-be	

removed	 code	 is	 our	 proprietary	SFString	
and	 collection	 classes,	 which,	 while	 capable,	

are	sub-optimal.	

If	 a	 user	 of	 the	 QuickBlocks™	 system	

wishes	 to	 replace	 the	 utillib,	 he	 or	 she	
may,	but	 certain	 features	would	be	 required.	

These	 are	 features	 not	 provided	 in	 the	

standard	 C++	 libraries	 that	 are	 needed	 to	

support	 applications	 and	 higher-level	

libraries	 built	 on	 top	 of	 utillib.	 This	
includes	 class	 hierarchy	 support	 (auto-

creation	 and	 identification),	 serialization	

support,	and	display	strings.	

Class	hierarchy	support	makes	available	a	

number	 of	 features	 including	 the	 ability	 to	

create	instances	of	a	class	given	a	string	input	

parameter.	 This	 feature	 makes	 possible	 the	

promotion	 of	 a	 blockchain’s	 transactions	 to	

the	 various	 token	 and	 per-smart-contract	

classes.	

Serialization	 allows	 for	 fast,	 binary	

storage	 and	 retrieval	 of	 the	 class	 data.	 This,	

along	 with	 significant	 pre-computations,	 is	

the	primary	way	we	speed	up	data	access.	

Display	 strings	 allow	 our	 software	 to	

export	 the	 state	 of	 a	 particular	 instance	 of	 a	

class	 in	 any	 desired	 format	 given	 an	

appropriately	 constructed	 formatting	 string.	

These	 formatting	 strings	may	 represent	 tab-

delimited	 text,	 comma-separated	 values,	

JSON,	 or	 any	 other	 desired	 format	 including	

the	 ability	 to	 inject	 the	 data	 directly	 into	 an	

arbitrary	database.	Display	string	 technology	

is	described	in	Appendix	B.	

	

Abilib	Library	
The	abilib	 library	provides	capabilities	

for	 reading,	 writing,	 and	 manipulating	

application	 binary	 interface	 files	 which	 are	

one	 of	 the	 outputs	 of	 the	 compilation	 and	

deployment	 stage	 of	 an	 Ethereum	 smart	

contract.	 These	 files	 list	 each	 smart-contract	

interface	 function	and	all	events	 that	may	be	

emitted	 from	 a	 smart	 contract.	 Both	 public	

and	 private,	 constant	 and	 non-constant	

function	 calls	 are	 included	 in	 the	 ABI,	

however	 because	 only	 non-constant,	 public	

functions	 place	 transactions	 on	 the	

blockchain,	 we	 concern	 ourselves	 only	 with	

that	 subset	 of	 functions.	 In	 future	 versions,	

we	 intend	 to	 support	 all	 functions	 from	 the	

ABI.	 All	 events	 found	 in	 the	 ABI	 are	 of	

interest.	

Three	 classes	 comprise	 the	 abilib	
library:	 CAbi,	 CFunction,	 and	

CParameter.	
The	 primary	 class	 in	 the	 library	 is	CAbi	

which	carries	the	 list	of	 functions	and	events	

found	 in	 the	 smart	 contract’s	 interface.	 We	

choose	 to	 record	 this	 list	 of	 functions	 and	

events	 twice,	 once	 sorted	 by	 name,	 and	 a	

second	list	sorted	by	the	item’s	encoding.	

In	 this	 way,	 we	 allow	 ourselves	 much	

faster	 access	 to	 the	 data	 than	 would	 be	

possible	 otherwise.	 In	 some	 parts	 of	 the	

processing,	we	need	to	find	an	encoding	given	

a	 name,	 in	 others	 we	 need	 to	 find	 a	 name	

given	an	encoding;	therefore,	we	store	the	list	

twice,	 sorted	 respectively	 by	 name	 or	

encoding.	

A	 second	 C++	 class,	 stored	 as	 the	 above	

mentioned	two	lists,	is	the	CFunction	class.	
CFunction	 stores	 both	 the	 functions	 and	
the	events	of	a	smart	contract.	CFunctions	
store	lists	of	CParameters	which	are	tuples	
of	 field	 types,	 field	 names	 and	 other	

attributes.	

In	 this	 way,	 the	 CAbi	 class	 is	 able	 to	
represent	a	full	description	of	the	interface	of	

any	smart	contract.	

Each	of	these	three	classes	in	the	abilib	
library	 was	 generated	 automatically	 from	

configuration	 files	 using	 the	 makeClass	
application	as	detailed	in	Appendix	A.	

By	 nature	 of	 having	 been	 derived	 from	

the	 CBaseNode	 class,	 each	 of	 these	 classes	
implement	 the	 ability	 to	 serialize	 and	

deserialize	 themselves,	 display	 themselves	

using	 display	 strings,	 and	 import	 and	 export	

themselves	to	various	file	formats.	

In	 Appendix	 C,	 we’ve	 included	 the	

configuration	files	for	the	abilib	classes,	as	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

7	

well	 as	 the	 definition	 files	 for	 all	 of	 the	

automatically	 generated	 code	 in	 the	

etherlib	and	tokenlib	libraries.	Because	
most	of	the	code	is	automatically	generated	in	

these	 libraries,	 we	 show	 only	 the	

configuration	files	in	the	appendix.	

abilib	is	the	primary	component	of	two	
significant	portions	of	our	system:	(1)	the	ABI	

data	 for	 a	 smart	 contract	 is	 used	 when	

parsing	 the	 input	 data	 field	 of	 a	 blockchain	

transaction,	 thereby	 associating	 the	

appropriate	 function	 call	 to	 the	 transaction	

awaiting	further	use.	It	does	this	by	providing	

the	parameter	lists	to	the	function	as	found	in	

the	ABI	in	an	easy	to	use	format.	Additionally,	

event	encoding	and	parameter	data	is	parsed	

using	the	similar	functionality.	

It	 is	 this	 ability	 to	 parse	 a	 transaction’s	

input	 data	 and	 event	 logs	 that	 allows	 us	 to	

promote	 generic	 transactions	 to	 per-smart-

contract	 classes	 as	 mentioned	 above.	 This	

realizes	 the	 second	 major	 function	 of	 the	

abilib	library.	
	

Etherlib	Library	
etherlib	 is	 at	 the	 heart	 of	 the	 entire	

system	 and	 consists	 of	 four	 	 primary	

functionalities:	 (1)	 communication	 with	 the	

blockchain	 node,	 (2)	 mirroring	 and	 caching	

the	 received	 blockchain	 data,	 (3)	 parsing	 of	

both	transactional	input	data	and	receipt	logs	

addresses	 and	 topics	 (it	 is	 this	 function	 that	

underpins	 the	 tokenlib	 and	 per-smart-
contract	libraries),	(4)	a	series	of	convenience	

functions	 for	 traversing	 all	 or	 part	 of	 the	

blocks	 and	 the	 transactions	 and	 accounts	

encountered	 while	 traversing	 the	 blocks.	 A	

final	 functionality	 is	 the	 acquisition	 and	

application	of	the	currency’s	price	data.	

	

Communication	with	the	node	
Using	 either	 the	 RPC	 via	 the	 curl	

libraries	or	inter-process	communication,	the	

etherlib	 communicates	 with	 the	 node	
using	 functions	 similarly	 named	 to	 those	

found	 in	 the	 RPC.	 For	 example,	 functions	

getBlock,	 getTrans,	 getReceipt,	
traceTransaction,	 lastestBlock,	 and	

getBalance	 mirror	 names	 from	 the	 node’s	

RPC.	

Many	 of	 the	 interfaces	 provided	 by	 the	

RPC	 for	 retrieving	 data	 are	 mimicked	 by	

etherlib.	We	do	not	provide	 interfaces	 for	
communicating	back	to	the	node	to	do	things	

such	 as	 sign	 or	 initiate	 transactions.	We	 feel	

that	this	type	of	interaction	is	best	handled	by	

secured	wallet	software	or	some	other	means	

where	 there	 has	 been	 a	 much	 heavier	 focus	

on	security.	While	having	done	everything	we	

can	 to	 make	 our	 code	 secure,	 our	 system	 is	

dealing	 only	with	 immutable	 data	 extraction	

from	the	blockchain.	

The	 reader	 is	 invited	 to	 read	 about	 using	

the	node’s	RPC	in	documentation	to	be	found	

outside	of	this	white	paper	[3][4].	

	
Mirroring	of	blockchain	data	

The	 mirroring	 (or	 caching)	 of	 the	

blockchain	 data	 is	 provided	 by	 six	 classes:	

CBlock,	 CTransaction,	 CReceipt,	
CLogEntry,	 CTrace,	 and	 CStructLog.	
Each	 of	 these	 classes	 is	 documented	 in	

Appendix	D.	

As	has	been	discussed	earlier,	 the	various	

fields	 in	 the	 CBlock	 class	 include	 a	 list	 of	
transactions.	 The	 CTransaction	 class,	 the	
most	 used	 class	 in	 the	 system,	 contains	 the	

from,	 to,	 value,	 and	 timestamp	 values	

expected	 of	 any	 transaction	 in	 addition	 to	 a	

transaction	 receipt.	 The	 CReceipt	 class	
contains,	 importantly,	 gasUsed	 and	 the	 logs	
and	 traces	 necessary	 to	 determine	 the	
outcome	of	a	transaction.	

	

	

Parsing	of	transaction	input	and	event	topics	
Given	an	ABI	for	a	smart	contract,	we	first	

ensure	that	the	function	and	event	signatures	

are	canonical.	Given	 the	canonical	 signatures	

we	 then	 proceed	 to	 encode	 these	 signatures	

so	they	may	be	used	later	to	decode	the	input	

data	 fields	 of	 each	 transaction	 and	 the	

indexed	topics	and	data	of	each	receipt	log.	

This	 involves	 a	 two-step	 process	 of	 first	

converting	 the	 Ascii	 representation	 of	 the	

canonical	 signature	 to	 hexadecimal	 and	 then	

using	 RPC’s	 sha3	 function	 to	 encrypt	 the	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

8	

signature.	For	smart	contract	functions	found	

in	 the	 ABI,	 only	 the	 first	 four	 bytes	 (eight	

hexadecimal	characters	of	the	resulting	sha3)	

are	used	as	the	encoding.	For	event	in	the	ABI,	

the	 entire	 32	 bytes	 (64	 hexadecimal	

characters)	are	used.	

Armed	with	 the	 encoded	 input	 and	 event	

signatures,	the	system	uses	the	ABI	to	decode	

the	input	data	field.	It	does	this	by	reading	the	

type	of	each	parameter	to	a	function	or	event	

and	 extracting	 that	 data	 type	 from	 the	 input	

field	 (in	 the	 case	 of	 a	 transaction)	 or	 in	 the	

indexed	 topics	 (in	 the	 case	 of	 the	 receipt	

logs).	

Armed	 with	 this	 extracted	 data,	 the	

function	 parser	 returns	 a	 delimited	 string	 of	

the	 function	 or	 event	 name	 plus	 the	 various	

parameters.	

The	 tokenlib,	 walletlib,	 and	

customized	 per-smart-contract	 libraries	

further	 use	 this	 parsed	 function	 and	 event	

data	 to	 promote	 particular	 transactions	 or	

receipt	 logs	 to	 a	 customized,	 recognizable,	

C++	 class	 fully	 exposing	 the	 function	 or	

event’s	meaning.	

	

Convenience	 functions	 for	 traversing	 blocks,	
transactions,	and	accounts.	

There	 are	 numerous	 functions	 in	 the	

etherlib	 that	 begin	 with	 forEvery…,	 such	
as	 forEveryBlockFromClient,	 or	

forEveryMini-Block.	 There	 are	 too	 many	 to	

enumerate	here.	Please	see	Appendix	E	 for	a	

complete	list.	

These	 functions	 expect	 to	 have	 been	

previously	 instructed	 how	 the	 end	 user	

wishes	 to	 access	 the	 requested	 items	 by	 use	

of	 an	 initialization	 function	 called	

etherlib_init().	
The	 initialization	 function	 may	 be	 called	

with	 values	 such	 as	 “infura,”	 “parity,”	
“geth,”	 “binary,”	 or	 “fastest.”	 The	
system	 determines	 how	 best	 to	 deliver	 the	

data	requested	in	the	most	efficient	way.	

For	 example,	 because	 QuickBlocks™	 does	

not	 store	 input	 data	 in	 the	 fixed-width	

miniTransaction	 arrays	 (because	 it	 is	 of	

variable	 length),	 we	 fall	 back	 to	 the	 binary	

representation	if	that	data	is	requested.	

Furthermore,	 if	 the	 system	 is	 directed	 to	

deliver	 blocks	 containing	 no	 transactions,	 it	

reverts	to	requesting	that	data	from	the	RPC.	

In	 this	way,	 the	etherlib	 is	 able	 to	always	
deliver	 the	 requested	 data	 as	 quickly	 as	

possible.	 Thereby	 comes	 our	 system’s	

name—	QuickBlocks™.	

Currency	 pricing	 information	 is	 available,	

as	a	convenience,	through	the	CPriceQuote	
class.	

	
Acctlib	Library	

The	 acctlib	 provides	 functionality	 to	
store	 per-account	 data,	 such	 as	 a	 list	 of	

transactions	 of	 interest	 for	 an	 account,	 in	 a	

quickly	accessible	16-way	tree	data	structure	

[5]	 keyed	 by	 account	 address.	 This	 data	

structure	lends	itself	very	well	to	storing	per-

account	data	particularly	 given	 the	nature	of	

the	 indexing	 key	which	 is	 a	 20-byte	 account	

address.	

While	 this	 is	 not	 how	 QuickBlocks™	

actually	implements	storing	per	account	data,	

conceptually,	 as	 each	 block	 is	 produced,	 we	

extract	 the	 list	 of	 transactions	 from	 that	

block.	 The	 transactions	 are	 traversed	

searching	 for	 accounts	 involved	 in	 that	

transaction.	 For	 each	 such	 account,	 we	

append	 the	 block_number.transaction_id	 to	
the	 end	 of	 that	 account’s	 growing	 list	 of	

references.	These	 lists	of	 “interesting”	blocks	

and	transactions	are	stored	in	the	tree	keyed	

by	account	address.	

We	 say	 “conceptually”	 above	 because	

QuickBlocks™	 does	 not	 actually	 do	 this	

processing	 at	 each	 block.	 Instead,	 and	 in	

response	to	our	desire	to	minimize	the	impact	

of	 our	work	on	 the	 target	machine,	we	 store	

these	 lists	 only	 when	 requested	 by	 an	 end	

user.	 This	 minimize	 the	 on-disc	 size	 of	 the	

growing	account-bases	list	of	transactions.	

As	requests	are	made	to	certain	tools	and	

applications	 the	 16-way	 tree	 data	 structure	

provides	very	 fast	 access,	!(log &),	to	 the	 list	
per	account.	

This	library	is	currently	experimental.	

	

Tokenlib	and	Walletlib	Libraries	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

9	

Created	 automatically	 entirely	 by	 the	

makeClass	 and	 grabABI	 applications,	 the	
tokenlib	 and	 walletlib	 libraries	

implement	 functionality	 to	 provide	 support	

for	 common	 Ethereum	 smart	 contract	

functionality.	

We	 could	 have	 allowed	 each	 smart-

contract	 that	 supports	 the	 ERC20	 token	

standard	 to	 implement	 these	 functions	 on	

their	 own,	 but	 because	 of	 the	 prevalence	 of	

these	 functions,	 and	 because	 for	 many	 use	

cases	 the	 ABI	 file	 may	 not	 be	 available,	 we	

chose	 to	 implement	 this	 common	

functionality	 in	 libraries.	 This	 allows	 us	 to	

support	 these	 common	 types	 of	 smart	

contracts	without	 requiring	 an	 ABI	 file	 from	

the	end	user	(which	is	some	cases	may	not	be	

available).	

By	 virtue	 of	 being	 created	 automatically	

by	makeClass,	 each	 of	 the	 classes	 in	 these	
libraries	 may	 be	 customized	 using	 the	

//EXISTING_CODE	 functionality.	 However,	
at	present,	these	class	are	not	customized.	

As	a	further	consequence	of	being	derived	

from	 the	 base	 classes	 of	 the	 etherlib	
library,	 each	 of	 these	 classes	 may	 be	 easily	

“promoted”	 to	more	capable	and	 informative	

classes.	 The	 two	 built-in	 functions,	

promote_to_transaction(CTransaction	 *t),	 and	
promote_to_event(CLogEntry	*e)	 are	provided	
to	promote	any	given	etherlib	class.	

In	each	of	these	two	functions,	the	parsed	

data	 is	 retrieved	 and	 then	 split	 to	 reveal	 the	

function	 or	 event	 name	 and	 its	 parameters.	

Given	 this	 information	 the	 appropriate	 class	

is	 created	 dynamically	 and	 the	 particular	

fields	 of	 the	 class	 are	 assigned	 from	 the	

parsed	parameters.	

As	difficult	as	this	is	to	explain,	this	is	one	

of	 the	 fundamental	 capabilities	 provided	 by	

QuickBlocks™.	 By	 being	 able	 to	 promote	

generic	 CTransaction	 instances	 to	 richer,	
more	 informative	 classes	 particular	 to	 a	

smart	 contract,	 QuickBlocks™	 is	 able	 to	

regurgitate	 or	 re-deliver	 richer	 data	 than	 it	

was	given.	

Instead	 of	 simply	 delivering	 the	 from,	 to,	
amount,	 and	 timestamp	 from	 a	 transaction	
along	with	an	unparsed	input	data	field	(as	is	

available,	 at	 best,	 from	 the	 RPC),	

QuickBlocks™	 delivers	 fully	 articulated,	

parsed	JSON,	tab-delimited,	comma-separated	

or	any	other	format	data	to	a	smart	contract’s	

front	end	or	desktop	application.	

Furthermore,	 by	 virtue	 of	 being	 derived	

ultimately	 from	 the	 CBaseNode,	 each	 of	
these	“promoted”	classes	inherit	the	ability	to	

create	itself	dynamically	and	serialize	itself.	It	

is	 therefore	 possible	 to	 build	 a	 list	 of	 all	

transactions	 for	 a	 particular	 account	 (or	

series	 of	 accounts)	 or	 smart	 contract	 and	

store	 this	 data	 in	 a	 serialized,	 binary	 format	

for	very	fast,	later	retrieval.	

The	 tokenlib	 and	 walletlib	 are	
provided	 so	 as	 to	 support	 parsing	 of	 a	 small	

collection	 of	 functions	 and	 events	 related	 to	

the	 Ethereum	 token	 standard	 and	 multi-sig	

wallets	 even	 in	 the	 absence	 of	 a	 smart	

contract’s	ABI	definition.	

In	 other	 words,	 any	 smart	 contract	 that	

implements	 the	 ERC	 20	 token	 interface	may	

be	 successfully	 promoted	 even	 without	 its	

ABI.	 In	the	presence	of	an	ABI,	an	even	more	

useful	and	valuable	promotion	of	transactions	

and	events	may	be	accomplished.	This	feature	

is	described	in	the	next	session.	

	
Per-Smart	Contract	Libraries	

The	 final	 type	 of	 library	 included	 in	 the	

QuickBlocks™	system	is	not	included	until	the	

end	user	of	the	system	creates	it.	This	type	of	

library	is	called	here	a	customized	per-smart-

contract	library.	

These	libraries	require	the	presence	of	an	

ABI	 file	defining	 a	 smart	 contract’s	 interface.	

Given	 the	 ABI	 definition,	 and	 using	 the	

makeClass	 application,	 and	 further	

anticipating	 the	 creation	 of	 a	 makeClass	
configuration	 file	 using	 the	 grabABI	
application,	 the	 system	 may	 automatically	

create	a	collection	of	C++	classes	along	with	a	

make-based	 build	 system	 for	 generating	 a	

static	 library	 customized	 to	 represent	 the	

smart	contract.	

We’ve	 completed	 an	 example	 using	 “The	

DAO’s”	 ABI	 and	 present	 the	 results	 at	

http://dao.quickblocks.io.	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

10	

Notwithstanding	what	we	mention	above	

about	 the	 need	 for	 the	 ABI	 function,	 the	

special	 case	 of	 the	 ERC	 token	 interface	 and	

common	multi-sig	wallets	 is	 implemented	 in	

the	 tokenlib	 and	 walletlib	 libraries;	
therefore,	 the	 few	 functions	 and	 events	

related	to	these	types	of	 transactions	are	not	

generated	in	the	automated	process.	

This	 then	 is	 the	 most	 central	 idea	

expressed	 in	 this	 white	 paper:	 the	

QuickBlocks™	system	is	able	to	generate	a	full	

accounting	 for	 any	 Ethereum	 smart	 contract	

for	 which	 an	 ABI	 is	 available	 by	 virtue	 of	

being	 able	 to	 fully	 parse	 all	 transactions	 and	

events	 associated	 with	 that	 contract.	

Furthermore,	 the	 functionality	 needed	 to	 do	

so	is	fully	automated.	

With	 the	 QuickBlocks™	 system	 installed,	

and	an	in-sync	local	blockchain	node,	the	end	

user	simply	needs	to	run	the	command	

	

grabABI <address> -g	
	

The	resulting	C++	code,	which	is	placed	in	

a	 folder	 called	 ./parselib	 will	 contain	 the	

software	 code	 and	 build	 system	 that	 will	

allow	a	programmer	to	retrieve	raw	RPC	data	

from	the	node	and	produce	 fully	parsed	data	

that	may	be	exported	 to	 any	 file	 format.	The	

resulting	 data	 can	 be	 used	 by	 the	

programmer	 to	 better	 understand,	 test,	 and	

stress	test	his/her	smart	contract,	or	provide	

data	 to	 a	 front-end	 website	 or	 desktop	

application.	

Tools	and	Applications	

The	 following	 sections	 describe	 each	

individual	 tool	 and	 application	 that	 we’ve	

written	against	the	above	libraries.	

Prior	 to	 this	 we	 briefly	 discuss	 a	 few	

topics	 that	 are	 applicable	 to	 all	 tools	 and	

applications,	 such	 as	 keeping	 the	 scraped	

blockchain	 cache	 fresh,	 accounting	 for	 forks	

in	 the	 blockchain,	 serialization	 and	 append	

only	 files,	 and	 the	exportation	and	display	of	

the	data.	

	

Freshening	the	Local	QuickBlocks™	Cache	
Data	 accumulates	 on	 the	 blockchain	

continually.	Transactions	are	cast	against	 the	

network	 many	 times	 each	 second,	 and	 the	

number	of	transactions	is	steadily	increasing.	

Therefore,	 a	 process	 is	 needed	 to	 repeatedly	

freshen	 the	 local	 cache	 that	 implements	 the	

system.	

At	 each	 invocation	 of	 the	blockScrape	
process	 (detailed	 below)	 we	 read	 a	

previously	 stored	 value	 indicating	 the	 last	

visited	block.	Initially	the	last	visited	block	is	

zero.	 The	 freshening	 process	 requests,	

through	 the	 RPC	 interface,	 blocks	 up	 to	 and	

including	 the	 latest	 block	 on	 the	 chain	 (a	

value	that	easily	available	through	the	RPC).	

On	 each	 invocation,	 blockScrape	
requests	 recent	 blocks	 along	 with	 their	

transactions.	 Requests	 for	 each	 transaction’s	

receipts	 are	 then	 initiated.	 The	 receipt	 along	

with	 its	 associated	 transaction	 is	 processed	

for	 error	 identification,	 and	 the	 block,	 if	 it	

contains	 at	 least	 one	 transaction,	 is	 then	

serialized	to	the	binary	cache.	

Once	 installed	 and	 fully	 running,	 the	

blockScrape	 process	 is	 automated	 to	
ensure	 data	 freshness	 using	 a	 functionality	

such	 as	 the	 Linux	 cron	 command	 or	 similar.	

In	 this	 way,	 the	 QuickBlocks™	 binary	 cache	

remains	as	fresh	as	the	blockchain	data	itself.	

	

Handling	Forks	in	the	Chain	
Blockchains	 are	 guaranteed	 to	 be	

consistent	 across	 all	 nodes—eventually.	

There	 are	 times,	 however,	 when	 a	 certain	

subset	of	nodes	believes	a	certain	block	is	the	

latest	 valid	 block,	 while	 a	 different	 subset	

believes	 a	 different	 block	 to	 be	 valid.	 This	 is	

an	 unavoidable	 consequence	 of	 the	 way	

blockchains	operate.	

In	order	 to	 account	 for	 this	 aspect	of	 the	

blockchain,	 QuickBlocks™	 assumes	 that	

recent	 blocks,	 which	 may	 have	 been	

previously	processed	and	stored,	are	open	for	

reevaluation.	 We	 do	 this	 by	 assigning	 a	

boolean	 ‘finalized’	 flag	 to	each	block,	 initially	

set	to	false.	

Our	system	does	determine	if	a	particular	

block	is	valid	(that	is	the	job	of	the	blockchain	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

11	

itself).	 We,	 instead,	 assume	 that	 any	

previously	processed	block	within	the	last	25	

must	be	reevaluated.	Once	reevaluated,	 if	the	

block	 is	 more	 than	 25	 from	 the	 head	 of	 the	

chain,	the	finalized	flag	is	set	to	true,	and	the	

block	is	not	re-evaluated	again.	

So,	while	 above,	we	 did	 indicate	 that	 the	

blockScrape	 process	 evaluates	 blocks	

from	the	most	recently	visited	block	to	 latest	

block,	 in	 reality	 it	 processes	 to	 the	 latest	

block	 on	 the	 chain	 minus	 25,	 replacing	 any	

values	it	finds	in	any	previously	stored	blocks.	

In	 this	way,	 one	may	 be	 certain	 that	 any	

block	older	than	25	blocks	from	latest	block	is	

‘finalized,’	while	blocks	within	25	of	the	latest	

block—while	 most	 likely	 valid—are	 subject	

to	reevaluation.	

While	solutions	to	freshening	and	forking	

are	 detailed	 here	 in	 the	 context	 of	 the	

blockScrape	 application,	 these	 issues	

apply	 to	 many	 of	 the	 applications	 described	

below.	 Where	 appropriate,	 each	 application	

handles	these	issues	similarly.	

	

Serialization	and	Append	Only	Files	
Blockchain	data	is	immutable.	This	means	

that,	 once	 finalized,	 a	 block	 will	 never	 be	

modified.	 Furthermore,	 it	 is	 a	 truism	 that	

appending	 binary	 data	 to	 a	 file	 on	 most	

operating	 systems	 is	 significantly	 faster	 than	

opening	that	same	file	for	random	access	and	

editing,	especially	when	the	file	is	large.	

We	take	advantage	of	this	fact	throughout	

our	work.	

For	 example,	 the	 fullBlock	 index	 is	
append	 only,	 however,	 because	 of	 potential	

forks,	 we	 cannot	 simply	 append	 non-empty	

block	 indices	 to	 this	 list.	 We	 therefore	 only	

append	blocks	older	than	25	blocks	 from	the	

top	of	the	chain	to	this	data	file.	We	maintain	

a	separate	file	for	non-finalized	blocks	where	

appropriate.	 This	 includes	 the	 fullBlock	
index,	 the	 miniBlocks	 index,	 and	 various	
other	 files.	This	allows	us	 to	open	 the	 larger,	

finalized	 block	 indices	 in	 append-only	 mode	

and	 operate	 on	 separate,	 smaller	 files	 via	

random	 read/write	 access	 for	 non-finalized	

data.	

In	 a	 server	 environment,	 or	 a	 desktop	

application	 environment,	 these	 concerns	 are	

lessened	as	one	may	keep	the	data	in	memory	

and	write	to	file	when	necessary.	

	

Export	Formatting	and	Display	Strings	
Using	particularly	formatted	strings,	each	

class	 derived	 from	 the	 CBaseNode	 may	
display	 its	 own	 contents	 into	 whatever	

format	is	requested.	

This	 is	 accomplished	 using	 a	 technology	

of	 our	 own	devising	 called	 display	 strings.	 A	

display	 string	 contains	 squirrely-bracket	

surrounded	 field	 names	 stored	 inside	 a	

square-bracketed	 sections	 of	 the	 string.	 The	

square-bracketed	 surrounded	 template	 will	

only	display	if	the	field	value	of	the	identified	

field	is	non-empty.	

This	 allows	 us	 to	 display	 tabular	 data	

which	 may	 contain	 empty	 rows	 which	 we	

desire	 not	 to	 display.	 Furthermore,	 this	

allows	 us	 to	 display	 minimally	 small	 JSON	

data	as	fields	with	default	or	empty	values	are	

not	 displayed.	 Display	 string	 technology	 is	

more	fully	described	in	Appendix	B.	

	

In	 the	 remainder	 of	 this	 section	 we	

discuss	individual	applications	and	tools	built	

upon	 various	 combinations	 of	 the	 above	

libraries.	

	

The	blockScrape	Application	
The	 first	 application	 component	 of	

QuickBlocks™	 interacts	 with	 the	 blockchain	

node	directly	using	RPC	or	IPC	to	request	the	

blockchain	data.	Delivered	blocks	arrive	from	

RPC	 in	 a	 format	 called	 JSON.	 The	 first	 task,	

therefore,	 of	 the	 blockScrape	 app	 is	 to	
parse	 the	 JSON	 data	 into	 an	 internal,	

proprietary,	in-memory	format.	As	each	block	

is	 parsed,	 its	 list	 of	 transactions	 is	 also	

retrieved	and	parsed.	

At	this	point,	our	system	determines	if	the	

block	 is	 either	 (a)	 empty	 of	 transactions,	 or	

(b)	contains	one	or	more	transactions.	 In	the	

later	 case,	 the	 block	 is	 marked	 for	 later	

writing	to	the	binary	cache.	

The	 JSON	 data	 is	 comprised	 of	 Ascii	

strings,	 however,	 both	 internally	 and	 on	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

12	

permanent	storage,	 it	 is	stored	as	bytes.	This	

conversion	 reduces	 the	 data’s	 footprint	 by	

nearly	½.	

Prior	 to	 writing	 blocks	 to	 the	 binary	

cache,	 we	 further	 request	 of	 the	 node	 each	

transaction’s	 receipt.	 The	 transaction	 receipt	

provides	 information	needed	 to	 determine	 if	

the	 transaction	 successfully	 completed	 or	

ended	 in	 error.	 This	 high-cost	 determination	

is	 performed	 once,	 on	 our	 initial	 encounter	

with	 the	 block,	 eliminating	 repeated	

calculation	 of	 a	 value	 that	will	 never	 change	

(due	 to	 the	 immutability	 of	 the	 data).	

Determining	 whether	 or	 not	 a	 transaction	

was	in-error	is	described	in	detail	below.	

In	 addition	 to	 each	 transaction’s	 receipt,	

we	accumulate	each	transaction’s	events	logs.	

Logs	 are	 generated	 into	 a	 receipt	 during	 the	

execution	of	a	smart	contract	at	each	point	in	

the	 smart	 contract	 where	 the	 programmer	

has	inserted	such	events.	

The	presence	or	absence	of	an	event	 in	a	

transaction’s	 receipt	 is	a	partial	 indication	of	

the	 transaction’s	success	or	 failure,	but	not	a	

dispositive	 one.	 Due	 to	 the	 flexibility	 of	 the	

event	 system,	 and	 the	 possibility	 of	 poorly	

designed	event	placement,	 logs,	while	useful,	

are	 not	 an	 iron-clad	 method	 by	 which	 to	

document	 the	 operational	 history	 of	 a	 smart	

contract.	Transactions	may	either	(a)	succeed	

without	generating	accurate	events,	or	(b)	fail	

while	 generating	 misleading	 or	 confusing	

events5.	

It	 is	 generally	 accepted	 that	 an	

understanding	of	a	smart	contract’s	behavior	

may	 be	 gotten	 from	 an	 analysis	 of	 its	 logs,	

and,	 in	 fact,	 most	 existing	 smart	 contract	

front-ends	assume	this	to	be	true.	We	believe	

this	 is	 error–prone	and	suggest	 that	 full,	 fast	

access	to	the	transaction	and	event	data	from	

a	 smart	 contract	 is	 a	 better	 alternative	 than	

relying	on	the	events	logs	alone.	

	

																																								 																					
5	While	transaction	that	fail	will	not	generate	events,	

transaction	that	call	into	other	contracts	will	write	

events	even	if	the	called-into	transaction	fails.	If	poorly	

programmed,	this	may	result	in	one	contract	recording	

an	event	indicating	success,	while	the	called-into	

invocation	failed.	

Our	method	of	determining	the	success	or	

failure	 of	 an	 individual	 smart	 contract	

invocation	is	described	next.	

Each	transaction	carries	a	data	item	called	

gas,	 or	 as	 we	 call	 it	 gasAllowed6.	 This	 value	
indicates	the	maximum	allowable	cost	(as	set	

by	the	initiator	of	the	transaction)	allowed	for	

a	 particular	 transaction.	 Each	 transaction’s	

receipt	 contains	 an	 additional	 field	 called	

gasUsed.	 gasUsed	 indicates	 the	 total	 cost,	
recorded	by	the	node,	of	the	invocation.	

If	gasAllowed	 is	smaller	than	gasUsed,	the	
transaction	 unequivocally	 succeeded	 and	 is	

marked	as	such.	

Unfortunately,	 one	 may	 not	 rely	 on	 the	

inverse.	While	gasUsed	will	 never	 be	 greater	
than	 gasAllowed,	 it	 may	 be	 equal;	 however,	
this	 is	 not	 a	 clear	 indication	 of	 a	 failed	

transaction.	A	 successful	 transaction	may,	by	

happenstance,	use	exactly	as	much	gas	as	was	

allowed.		

In	 order	 to	 distinguish	 between	

successful	 transactions	 that	 used	 exactly	 as	

much	 gas	 as	 was	 allowed	 and	 an	 in-error	

transaction,	 that	 is,	 a	 transaction	 that	 failed	

either	due	to	(a)	 trying	to	use	more	gas	than	

was	provided,	or	(b)	as	a	result	of	the	source	

code	throwing	an	exception,	one	must	further	

request	of	the	RPC	a	trace	of	the	transaction.	

While	 not	 confirmed	 experimentally,	 the	

RPC	trace	request	 is	 likely	the	most	resource	

intensive	RPC	call	because	the	node	software	

must	 re-create	 the	 trace	 on	 the	 fly,	 and	

therefore	the	slowest	operationally.	

In	 our	 analysis	 of	 transactions,	 we’ve	

discovered	 that	during	 the	 first	 three	million	

blocks,	consisting	of	15,362,847	transactions,	

18.6%	 (2,859,376)	 needed	 to	 be	 traced	

because	gasAllowed	was	equal	to	gasUsed.	
By	 far	 the	 predominant	 reason	 for	 this	

need	for	tracing	is	direct	transfers	of	value	to	

non-contract	 address,	 each	 of	 which	 costs	

21,000	gas.	

Oddly,	 some	 Ethereum	 wallet	 software	

(such	as	Mist	at	the	time	of	this	writing)	send	

																																								 																					
6	We	hereafter	call	this	field	gasAllowed.	The	node’s	RPC	

documentation	[3][4]	calls	it	gas.	We	prefer	the	more	

accurate	name.	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

13	

exactly	21,000	gas	for	these	straight	transfers	

of	 value.	 Of	 the	 2,859,376	 transactions	 that	

needed	 to	 be	 traced	 in	 order	 to	 determine	

error	 status,	 2,680,783	 (93.75%)	 provided	

exactly	21,000	gas.	

This	appears	to	be	an	oversight	by	wallet	

providers.	 This	 unnecessary	 need	 to	 trace	

transactions	 to	 determine	 in-error	 status	

could	be	easily	removed	if	the	wallet	software	

sent	a	slightly	higher	value	of	gas,	say	21,001	

gas.	The	overage	would	be	 refunded,	but	 the	

transaction	 would	 not	 need	 to	 be	 traced	 to	

determine	if	it	was	in	error.	

Another	reason	for	the	high	prevalence	of	

the	 need	 to	 trace	 transactions	 is	 the	 liberal	

use	 of	 the	 ‘throw’	 keyword	 in	 many	 smart	

contracts;	 however,	 this	 is	 obviously	 less	

worrisome	than	the	21,000	gas	issue.	

	

Returning	 to	 the	discussion,	we	store	 the	

result	 of	 the	 in-error	 calculation	 on	 first	

encounter7,	 and	 thereafter	 realize	 significant	

performance	improvements	by	retrieving	this	

cached	 in-error	 information	 from	 our	

proprietary	binary	cache.	

After	 accumulating	 the	 full	 data	 for	 each	

transaction	 cohesively	 into	 a	 block	 so	 as	 to	

avoid	the	repeated	RPC	requests	necessary	to	

build	 it	 on	 the	 fly,	 we	 store	 the	 data	 to	

permanent	 binary	 storage	 in	 a	 format	

optimized	for	speed	of	access.	

This	 involved	 an	 experimentally	

determined	optimal	number	of	blocks	per	file	

so	 as	 to	 balance	 speed	of	 access	with	 size	 of	

storage	on	disc.	The	number	of	blocks	stored	

per	 file	 is	 parameterized	 allowing	 for	

different	 characteristics	 on	 different	

hardware/software	installations.	

	

During	 our	 initial	 evaluation	 of	 the	

blockchain	 data	 we	 discovered,	 to	 our	

surprise,	 that	 nearly	 than	 35%	 of	 all	 blocks	

(1,356,704	 of	 3,250,000)	 contain	 zero	

transactions.	 Because	we	 are	 interested	 only	

in	 transactions	and	accounts,	and	 in	order	 to	

save	 significantly	 in	 the	 size	 of	 the	 data	

																																								 																					
7	To	be	precise	after	the	block	is	finalized	when	it	

recedes	more	than	25	blocks	from	the	top	of	the	chain.	

written	 to	 permanent	 storage,	we	 store	 only	

blocks	with	one	or	more	transactions	to	disc.	

In	 order	 to	 avoid	 having	 to	 query	 the	

permanent	 storage	 to	determine	 information	

that	 we	 already	 know	 (whether	 or	 not	 a	

particular	 block	 contains	 transactions),	 we	

store	 an	 index	 of	 blocks	 that	 contain	

transactions.	

With	 this	 information,	 we	 may	 iterate	

over	 all	 non-empty	 blocks	 without	 checking	

for	 the	 existence	 of	 known	 empty	 blocks	 on	

disc.	

Additionally,	through	a	simple	calculation,	

we	 can	 iterate	 over	 all	 empty	 blocks	 if	 we	

wish.	 Because	we	do	 not	 store	 empty	 blocks	

on	 disc,	 here	 we	 need	 to	 revert	 to	 the	 RPC	

interface	 to	 retrieve	 the	 empty	 block	 data.	

Because	 there	 are	 no	 transactions,	 and	

therefore	 no	 need	 to	 determine	 if	 any	

transactions	 are	 in-error,	 the	 “slow”	 RPC	

interface	 is	 not	 overly	 burdensome.	 We	 do	

not	 need	 to	 request	 receipts	 nor	 trace	

transactions	for	empty	blocks	(because	there	

are	no	transactions).	

The	blockScrape	application	allows	us	
to	balance	between	speed,	access	to	the	data,	

and	 a	 minimization	 of	 permanent	 storage	

needed	for	the	binary	cache.	

The	 blockScrape	 process	 runs	

continually,	 and	 it	 is	 here	 that	we	 leave	 it	 to	

its	 operation	 in	 order	 to	 discuss	 the	 next	

process	 in	 the	 suite	of	 applications	 that	 fully	

describe	QuickBlocks™.	

	

The	miniBlocks	Application	
As	 stated	 earlier,	 our	 initial	

implementations	 are	 interested	 primarily	 in	

transactions.	 For	 this	 reason	 we	 store	 only	

blocks	that	contain	transactions.	

We	find,	however,	that	simply	storing	the	

blocks,	which	contain	a	significant	amount	of	

non-transactional	data	such	as	hashes,	bloom	

filters,	mining	 information	 and	 the	 like,	 does	

not	 provide	 the	 performance	 improvements	

we	seek.	

We	 use	 the	 miniBlocks	 application	 to	
strip	 unwanted	 data	 from	 each	 block.	 This	

necessitates	a	duplication	of	some	of	the	data,	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

14	

as	we	retain	the	original	block	data	and	store	

only	a	subset	of	the	data.	

In	 addition	 to	 removing	 unwanted	 data	

from	 the	 blocks,	 we	 also	 collapse	

transactions,	receipts,	and	traces,	into	a	single	

item	 called	 a	miniTransaction,	 arranging	 the	

data	 in	a	way	 that	 significantly	 increases	 the	

speed	with	which	we	can	deliver	it	to	our	end	

user’s	 applications.	 We	 do	 this	 by	 storing	

blocks	and	transactions	in	two	separate	fixed-

width	arrays	both	on	disc	and	 in	memory.	 In	

this	way,	we	can	simply	read	entire	 tables	of	

data	 into	 memory	 with	 a	 single	 binary	 read	

operation.	

Reading	 large	 chunks	 of	 data	 into	

memory	 is	 profoundly	 faster	 than	 serializing	

it	 into	 memory.	 Furthermore,	 it	 is	 orders	 of	

magnitude	 faster	 than	 parsing	 JSON	 string	

data.	

A	 miniBlock	 contains	 four	 fields:	 the	
timestamp	 of	 the	 block,	 the	 blockNumber	 of	
the	block,	the	 index	of	the	first	transaction	in	
the	 array	 of	 miniTransactions,	 and	 the	

number	 of	 miniTransactions	 included	 in	 this	
block	starting	at	the	index.	

For	 each	 miniTransaction,	 we	 store	 the	

following	 fields:	 the	 index	 of	 the	 transaction	
within	 the	 block,	 a	 boolean	 flag	 indicating	

success	 or	 failure	 of	 the	 transaction,	 the	
gasPrice	of	the	transaction,	the	gasUsed	by	the	
transaction,	the	gasAllowed	of	the	transaction,	
the	 from	 and	 to	 addresses	of	 the	 transaction,	
and	value	of	the	transaction.	

The	 remaining	 transaction	 related	 data	

(receipt	 logs	 and	 input	 data),	 being	 of	

variable	 length	 are	 not	 stored	 in	 the	

miniBlock	 array	 as	 this	 would	 make	 it	
impossible	to	read	the	entire	array	in	a	single	

operation.	 These	 items	 may	 be	 later	 loaded	

and	parsed	from	the	binary	blocks,	but	only	in	

the	 case	 where	 an	 end	 user	 has	 requested	

that	data	explicitly.	

This	 lesser	 amount	 of	 data,	 in	 itself,	

greatly	 speeds	 up	 access	 to	 the	 data.	

However,	 we	 realize	 a	 profound	 increase	

(two	 order	 of	 magnitude)	 in	 the	 speed	 of	

access	to	the	data	by	storing	the	miniBlock	
data	 in	 arrays	 as	 opposed	 to	 blocks	 which	

store	arbitrarily	long	lists	of	transactions.	We	

are	able	to	use	this	circumscribed	data	when	

possible,	 and	 revert	 to	 our	 blockScrape-
created	binary	data	when	necessary.	In	some	

cases,	depending	on	the	user’s	needs,	we	may	

have	 to	 further	 fall	 back	 to	 the	 RPC,	 for	

example	 if	 the	 user	 wants	 to	 visit	 empty	

blocks	or	analyze	mining	activity.	

	

The	accountTree	Application	
The accountTree	 application	 allows	

us	 to	 accumulate—for	 the	 first	 time,	 we	

believe—an	 off-chain	 list	 of	 all	 Ethereum	

accounts	and	various	data	per	account.	

During	the	creation	of	this	list	of	accounts,	

we	 are	 able	 to	 summarize	 various	 data	

related	 to	 the	 account,	 including	 its	 ether	

balance	 if	 any,	 a	 boolean	 indicating	 if	 the	

account	 contains	 contract	 code,	 the	 first	 and	

most	 recent	blocks	 in	which	 the	 account	has	

participated	 (including	 a	 marker	 indicating	

the	 existence	 of	 incoming	 internal	

transactions	 sent	 by	 smart	 contracts),	 the	

account’s	 address	 (obviously),	 and	any	other	

data	we	deem	useful.	

We	 store	 the	data	using	our	 serialization	

functionality	 which	 provides	 lightning	 fast	

access	 to	a	binary	 list	of	accounts	along	with	

this	associated,	user-specified	data.	

This	 type	 of	 data	will,	we	 hope,	 allow	us	

to	 increase	 the	 speed	 with	 which	 we	 can	

gather	 transactional	 data	 per	 address.	 Much	

of	the	discussion	until	now	has	concerned	the	

block	chain	data	as	a	whole,	but	we	think	the	

primary	 use	 for	 QuickBlocks™	 is	 to	 build	

accounting	 and	 analysis	 data	 for	 individual	

accounts	 and	 smart	 contracts.	 With	 a	 per-

account	list	of	the	first	and	latest	block	access,	

building	 such	 transaction	 lists	 will	 be	 made	

easier.	 Quick	 access	 to	 each	 account	 is	

accomplished	with	 a	 16-way	 k-ary	 tree	 data	

structure.		

The	 first	 and	 most	 recent	 block	 number	

references	 must	 account	 for	 the	 possibility	

that	 a	 smart	 contract	 having	 sent	 a	message	

or	 value	 to	 an	 account	 “internally.”	 The	

existence	 of	 these	 incoming	 internal	

transactions	 is	 the	 reason	 why	 it	 is	 not	

adequate	 to	 simply	 use	 a	 relational	 link	 to	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

15	

pick	 up	 all	 transactions	 with	 either	 a	 to	 or	
from	address	for	the	account.	

The	 accountTree	 application	 is	

currently	 under	 development.	 Parts	 of	 this	

code	are	under	an	open	source	license.	

	

The	gasHole	Tool	
Notwithstanding	 its	 name,	 nor	 the	 fact	

that	my	son	recently	stole	the	name	for	use	in	

his hackathon	project,	the	gasHole	tool	
is	 useful	 for	 analyzing	 a	 smart	 contract’s	 gas	

usage.	 This	 tool	 looks	 at	 each	 transaction	on	

the	 blockchain	 and	 attempts	 to	 summarize	

and	 analyze	 aspects	 of	 gas	 usage.	 Simple	

summaries,	 averages	 and	 statistics	 are	

created.	

In	addition,	if	the	end	user	requests	such,	

the	 tool	 can	 analyze	 the	 gas	 usage	 for	 a	

particular	 account	 or	 smart	 contract.	 For	

example,	a	smart	contract	purveyor	might	be	

interested	 to	 know	 how	much	 each	 function	

invocation	is	costing	his/her	users.	

As	 a	 further	 example,	 the	 programmer	

may	find	a	particular	smart-contract	function	

uses	 a	 higher	 per-invocation	 gas	 than	 a	

similar	 function.	 Upon	 analysis,	 the	

programmer	 may	 learn	 that	 this	 is	 due	 to	

repeated	 ‘throws’	 and	 poorly	 understood	 or	

poorly	 documented	 user	 input	 data.	 Or,	

perhaps,	the	function	is	written	in	such	a	way	

that	it	uses	more	gas	than	it	should.	(In	other	

words,	it’s	a	gasHole.)	
We’ve	 been	 experimenting	 with	 an	

analysis	 of	 The	 DAO’s	 gas	 usage,	 but	 do	 not	

have	useful	results	to	report	at	this	time.	

	

Tokenomics™	
The	 ERC20	 token	 standard	 defines	 an	

interface	that	makes	is	easier	for	tools	such	as	

blockchain	wallets	and	token	trading	markets	

to	 interact	with	 the	 token.	 By	 observing	 this	

pre-specified	interface,	ERC20	tokens	become	

fungible	 between	 token	 holders.	

QuickBlocks™,	being	tool	for	blockchains,	also	

supports	 the	 ERC20	 token	 through	 its	

tokenlib	library.	
We’ve	 developed	 the	 concept	 of	

Tokenomics™	to	explore	this	capability.	

We’ve	 produced	 a	 study	 [6]	 using	 one	 of	

the	 above-mentioned	 per-smart-contract	

libraries	for	“The	DAO.”	

In	 that	 study,	 we	 duplicated	 the	

“extraBalance	 accounting”	 accomplished	 in	

late	 summer	 2016.	 Reports	 online	 have	

suggested	 that	 the	 extraBalance	 accounting	

mentioned	 here	 may	 have	 taken	 more	 than	

twenty	hours	to	complete.	

QuickBlocks™	is	able	to	generate	identical	

results	(in	fact,	improving	on	the	accuracy)	in	

less	than	four	minutes.	

This	 is	 type	 of	 speed-up,	 more	 than	 two	

orders	of	magnitude,	is	what	we	have	been	in	

search	of.	

	

The	ethslurp	Application	
The	 ethslurp	 application	 was	 the	 first	

application	we	built	on	this	system.	Because	it	

was	 written	 prior	 to	 the	 blockScrape	
application,	 it	 retrieves	 its	 data	 from	 the	

http://etherscan.io	web	APIs,	which	makes	it	

an	odd	duckling	in	our	system.	

All	of	the	other	applications	mentioned	in	

this	paper	 read	directly	 from	 the	blockchain,	

or	 in	 some	 cases,	 from	 our	 binary	 cache	

depending	on	the	required	speed	and	level	of	

detail	desired.	

ethslurp	 does	 have	 one	 feature	 worth	

noting,	however,	 that	does	not	appear	 in	any	

of	our	other	applications.	This	 is	per-account	

binary	 caches,	 reflecting	 a	 central	 design	

criteria	of	all	of	our	code.	

The	 ethslurp	 application	 asks	 for	 and	

caches	 account	 data	 only	 when	 an	 end	 user	

requests	 it.	 With	 each	 request,	 the	 data	 is	

freshened	and	perhaps	re-cached.	

Additionally,	 a	 --file	 command	 line	 is	

provided	 which	 allows	 multiple	 command	

lines	 to	 be	 stored	 in	 a	 text	 file	 for	 repeated	

invocations	much	like	the	sed –f	command	
line	option	from	Linux.	This	capability	allows	

for	 a	 single	 load	 of	 an	 account’s	 transaction	

data	 and	 repeated	 application	 of	 a	 series	 of	

commands.	

At	all	points	in	all	of	our	applications	and	

libraries	we	use	this	type	of	lazy	computation	
so	 as	 to	 allow	 for	 the	 fastest	 possible	 access	

we	can	give	to	the	data.	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

16	

	

The	verifyBlock	Application	
Because	 we	 are	 concerned	 with	 the	

accuracy	of	the	data	provided	by	our	system,	

we	provide	the	verifyBlock	application.	
In	 this	 simple	 app,	 we	 take	 a	 block	

number	or	a	range	of	block	numbers	from	the	

user’s	 command	 line.	 We	 then	 retrieve	 the	

RPC	 data	 for	 that	 block,	 all	 of	 the	 block’s	

transactions,	 and	 each	 of	 the	 transaction’s	

receipts	 and	 logs.	 We	 store	 this	 in	 a	 single	

concatenated	string.	

We	 then	 build	 the	 same	 type	 of	 string	

from	our	 internal	cache	with	 the	expectation	

that	we	get	 the	same	result.	Any	deviation	 is	

quickly	 inspected.	 There	 should	 be	 no	

deviations8.	

We	 provide	 the	 source	 code	 for	 this	

application	 as	 open	 source.	 In	 this	 way,	 our	

community	can	convince	themselves	that	 the	

QuickBlocks™	cache	delivers	identical	data	to	

that	available	through	the	RPC.	

On	 our	 local	 testing	 machines,	

verifyBlock	 runs	 continually,	 repeatedly	
asking	 for	 and	 verifying	 randomly-selected	

blocks.	We	have	 yet	 to	 have	 seen	 a	 reported	

difference	 between	 the	 blocks	 produced	 by	

our	cache	and	the	blocks	returned	by	the	RPC.	

	

Other	Applications	and	Tools	
There	are	a	number	of	other	applications	

and	 tools	 written	 against	 the	 various	

libraries.	 Among	 these	 are	 lastestBlock	
which	simply	retrieves	the	latest	block	on	the	

chain	and	delivers	 it	 to	 the	screen	or	 for	use	

in	 a	 shell	 script;	 getBlock	 which	 takes	 a	
single	block	number	or	a	range	of	blocks	and	

delivers	a	JSON	representation	of	the	block	to	

the	 screen	or	 file;	getTrans,	getReceipt,	
getLogs,	 getBloom,	 getTrace	 which	
each	return	the	corresponding	data	structure	

(as	 JSON)	 given	 a	 transaction	 hash	 (or	

blockNumber.transID).	 All	 of	 the	 ‘get’	 tools	

accept	a	 --depth	parameter	which	allows	 the	

user	to	retrieve	the	entire	data	stored	below	a	

particular	level.	

																																								 																					
8	Except	perhaps	when	the	block	is	within	25	blocks	of	

the	head,	but	this	is	taken	care	of	elsewhere.	

Various	 other	 tools	 include	 whenBlock	
which,	 given	 either	 a	 date	 or	 blockNumber	

returns	 the	 other;	 ethName	 which	 takes	
either	 a	 full	 or	 partial	 account	 address	 or	 a	

word	or	phrase	 and	 returns	 the	other	 to	 the	

command	 line,	 and	 getBalance	 and	

getTokenBalance	 which	 retrieve	 various	
balances	 given	 an	 address	 and	 a	

blockNumber	stored	on	the	Ethereum	chain.		

Each	 of	 these	 other	 applications	 or	 tools	

may	 be	 used	 in	 scripting	 scenarios	 to	

accomplish	various	useful	different	tasks.	

Use	Cases	

Here,	 we	 provide	 a	 list	 of	 partially-

implemented	 or	 imagined	 applications	 or	

processes	that	can	be	built	upon	our	system.	

	

Infura-like	Enhanced	RPC	(Infura++)	
Infura	 is	 a	 web-based	 system	 running	

Ethereum	 nodes	 and	 providing	 RPC	

interfaces	 to	 its	 clients.	 It	 supports	 an	

increasingly	 large	 number	 of	 end	 users	 in	 a	

manner	 similar	 to	 the	 way	 a	 traditional	

website	might	deliver	a	web	API.	

We	propose	a	system,	that	runs	in	tandem	

with	 Infura,	 that	 we	 call	 Infura++	 or	
Enhanced RPC.	This	 imaged	system	would	
allow	an	end	user	 to	specify	 the	address	of	a	

smart	contract,	whereby	QuickBlocks™	would	

retrieve	 the	 contract’s	ABI	 file,	 automatically	

generate	a	collection	of	C++	files	and	a	make-

based	build	system,	and	create	a	dynamically	

linked	 library	 for	 that	 contract.	 This	 per-

smart-contract	 interface	 could	 provide	

customized	 web-delivered,	 smart-contract-

specific	JSON	data	to	the	user	via	a	Web	API.	

Even	 if	 the	user’s	 smart	 contract	address	

does	 not	 have	 an	 available	 ABI,	 the	

Enhanced RPC	application	mentioned	here	
can	 provide	 JSON	 data	 for	 any	 ERC20	 token	

functions	or	events	without	 customization	of	

the	installation.	

This	system	might	encourage	end	users	to	

develop	 their	 front-end	 websites	 using	 the	

Infura++	 JSON,	 thereby	 tying	 them	 into	 a	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

17	

longer-term	 relationship	 the	 provider,	

including	on-going	remunerated	patronage.	

	

QuickBooks®	Integration	
Given	 that	 QuickBlocks™	 provides	 very	

access	 to	 particular	 account	 transactions	 as	

describe	above,	 it	 is	conceivable	that	this	 full	

transaction	 data	 could	 be	 exported	 into	

existing	 account	 systems	 such	 as	

QuickBooks®	from	Intuit.	

QuickBooks®	 has	 existing	 capability	 to	

handle	 this	 data.	 We	 have	 begun	 initial	

discussion	 with	 various	 members	 of	 our	

community	 on	 how	 this	 might	 be	

accomplished.	Progress	is	slow.	

Other	 existing	 accounting	 software	 can	

easily	be	accommodated	as	well.	

	

Blockchain	on	a	Stick	
We've	 modified	 the	 Ethereum	 node	

running	on	our	systems	to	store	its	data	on	a	

detachable	 SSD	 Drive	 for	 ease	 of	 movement	

from	 one	 machine	 to	 another.	 Furthermore,	

we’ve	 stored	our	various	 caches	and	 indexes	

on	the	same	drive.	

Prior	 to	 a	 personal	 meeting,	 we	

synchronize	 all	 available	 data	 on	 this	 SSD	

drive	 and	 take	 it	 with	 us	 to	 our	 meeting.	

Being	 attached	 via	 a	 USB	 cable,	 the	 drive	

detaches	 from	one	 computer	and	attaches	 to	

another	 looking	 very	 much	 like	 a	 popsicle,	

with	 a	 long	 wire	 projecting	 from	 one	 end	 a	

bulbous	 drive	 at	 the	 other.	 We	 call	 this	

popsicle-like	removable	drive	Blockchain-on-

a-Stick™.	

One	possibility	product	idea	is	to	produce,	

with	 the	 low	 latency	 of	 a	 day	 or	 two,	 a	

shippable	 Blockchain-on-a-Stick™	 for	 end	

users.	

This	 physical	 object	 could	 include	 an	

installation	 of	 the	 blockchain	 node	 software	

and	 the	 QuickBlocks™	 system	 fully	 installed	

and	able	to	run	directly	from	the	SSD	Drive.	

This	would	greatly	lessen	the	time	needed	

to	 synchronize	 the	 blockchain,	 while	 at	 the	

same	time	providing	a	fully-functioning	node.	

Furthermore,	 Blockchain-on-a-Stock™	 could	

include	the	QuickBlocks™	indexes	and	caches	

and	 the	various	software	 libraries,	 tools,	 and	

applications.	

It	 is	 conceivable	 that	 Blockchain-on-a-

Stick™	could	be	shipped	via	one-day	shipping.	

A	 simple	 plug-and-play	would	 allow	 an	 end-	

user	 to	 be	up	 and	 running	quickly	without	 a	

long	 process	 of	 downloading	what	 is	 certain	

to	become	increasingly	large	amount	of	data.	

Continued	 production	 of	 such	 a	 system	

would	 involve	 simply	 automating	 the	

updating	of	the	data.	

	

Debugging	Support	
For	 the	 first	 time	 (to	 our	 knowledge)	

QuickBlocks™	allows	a	smart	contact’s	author	

to	 record	 live	 transactions	 from	 a	 running	

smart	contract.	This	recording	can	be	directly	

fed	 back	 into	 a	 testing	 version	 of	 the	 same	

smart	 contract	 (or	 more	 importantly,	 with	

some	translation	of	the	data,	 into	a	proposed	

upgrade	to	the	smart	contract).	

Because	it	is	possible	for	QuickBlocks™	to	

convert	 (through	 parsing)	 each	 transaction	

back	 into	 the	 language	of	 the	smart-contract,	

this	enriched	data	may	be	used	to	test	various	

scenarios	and	interaction	patterns.		

Furthermore,	QuickBlocks™	provides	C++	

classes	 (via	 its	 per-smart	 contract	 parsing	

libraries)	 that	 may	 be	 used	 to	 mimic	

transactional	 data.	 These	 on-demand	

transactions	 may	 be	 used	 to	 generate	 high-

volume	 testing	 data	 and	 tools	 for	 analyzing	

possible	implementations	of	a	smart	contract	

prior	 to	 deployment,	 or	 to	 test	 gas	 usage,	

attack	 vectors	 or	 other	 aspects	 of	 the	

contract.	

Another	use	for	debugging	support	would	

be	 to	 optimize	 the	 Ethereum	 node	 data	 as	 a	

whole.	There	have	been	many	days	 in	recent	

months	where	the	blockchain	has	been	over-

burdened.	 For	 example,	 recent	 ICOs	 brought	

the	system	to	a	slow	grind	for	many	hours.	If	

one	 used	QuickBlocks™	 to	 record	 the	 period	

of	 over-use,	 one	 could	 repeatedly	 replay	

those	 transactions	 against	 a	 test	 version	 of	

the	node	(with	the	block-timing	reduced)	as	a	

method	 by	 which	 to	 identify,	 and	 perhaps	

remove,	bottlenecks.	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

18	

Had	 we	 only	 some	 of	 this	 capability	

before	the	deployment	of	the	DAO…	

	
Blockchain-Wide	Reporting	and	Analysis	

There	 is	 clearly	 a	 need	 for	 blockchain-

wide	 reporting	 and	 analysis.	 This	 ability,	

which	we	 believe	 is	 available	 to	 us	 at	 speed	

for	 the	 first	 time,	 has	 allowed	 us	 to	 identify	

two	 significant	 things	 about	 the	 Ethereum	

blockchain	 that	 had	 not	 previously	 been	

widely	known.	

We	 found,	 by	 analyzing	 blockchain-wide	

data	 that	 nearly	 than	 35%	 of	 all	 blocks	

contain	zero	transactions.	The	implications	of	

this	are	not	clear,	but	a	serious	analysis	of	this	

fact	may	provide	 insight	 into	 the	activities	of	

the	miners.	

More	 importantly	 we	 found	 that	 97%	 of	

all	 transactions	where	gasAllowed	 is	equal	 to	
gasUsed,	 and	 therefore	 which	 needs	 to	 be	
traced	 to	determine	 if	 the	 transaction	was	 in	

error,	 provide	 exactly	 21,000	 gasAllowed	
(indicating	simple	value	transfers).	

If	those	same	transactions	were	sent	with	

22,000	 gasAllowed	 instead,	 the	 time	 needed	
to	 identify	 in-error	 transactions	 by	

blockchain	 scrapers	 would	 be	 significantly	

reduced.	 This	 applies	 to	 all	 front-end	 and	

desktop	applications	as	well.	In	fact,	it	applies	

to	any	application	that	consumes	RPC	data.	

If	 Ethereum	 wallets	 provided	 22,000	

gasAllowed	 for	 simple	 value	 transfers,	 and	
only	21,000	is	consumed,	the	extra	1,000	gas	

would	 be	 refunded	 to	 the	 sender.	

Importantly,	this	would	decrease	the	number	

of	transactions	that	need	to	be	traced	because	

gasAllowed	would	not	be	equal	to	gasUsed	as	
it	is	today.	

Without	 QuickBlocks™,	 and	 its	 fast	

delivery	of	 this	 sort	of	blockchain-wide	data,	

this	 issue	 would	 have	 never	 been	 noticed.	

There	are	certainly	many	other	insights	to	be	

grocked	from	the	blockchain	data.	

Another	analysis,	perhaps	as	an	extension	

of	the	accountTree	application,	might	be	to	
notate	each	smart	contract	on	the	blockchain.	

With	 such	 a	 list,	 one	 could	 retrieve	 ABI	 files	

from	 various	 online	 sources.	 With	 this	

information,	 one	 could	 build	 a	 fully	

automated	 version	 the	 4byte.directory	

website	 extending	 it	 by	 adding	 not	 only	 all	

available	 functions	 found	 in	 all	 available	ABI	

files	but	also,	importantly,	all	event	signature	

tokens	 as	 well	 (which	 are	 currently	 not	

available).	

Another	possible	use	for	blockchain-wide	

analysis	 might	 be	 to	 analyze	 the	 smart	

contract	 code	being	 stored	on	 the	 chain.	Our	

guess	 is,	without	 having	done	 the	work,	 that	

much	 of	 the	 code	 on	 the	 blockchain	 is	

duplicated.	 Being	 immutable,	 one	 possible	

optimization	 to	 the	 node	 that	 might	 lessen	

storage	 space,	 would	 be	 to	 store	 identical	

code	in	a	single	location	addressed	by	a	hash	

of	 the	 byte	 code.	 In	 other	 words,	 instead	 of	

storing	the	code	per	address	of	creation,	store	

it	 in	 a	 content-addressable	 location	 as	 do	

systems	 such	 as	 IPFS.	 This	 would	 allow	 for	

de-duplication	 of	 the	 byte	 code,	 thereby	

lowering	storage	requirements	on	the	node.	

Implications	and	Future	Concerns	

To	complete	our	presentation,	we	present	

a	 few	 implications	of	our	work	and	conclude	

our	paper.	

	

Client-Side	Decentralized	Applications	
As	 we	more	 fully	 developed	 our	 system,	

we	soon	realized	that,	given	the	nature	of	the	

blockchain	 node	 software,	 which	 in	 its	

fundamental	 form	 is	 fully	 decentralized	 on	

each	end	user	machine,	is	that	a	new	day	may	

be	 dawning	 for	 application	 developers.	 Or,	

better	said,	an	old	day	is	re-dawning.	

Prior	 to	 the	 advent	 of	 the	 wide-spread	

networking	 and	 the	 Internet,	 application	

development	 concerned	 itself	 only	 with	 the	

end	 user’s	 desktop.	 In	 a	 very	 real	 way,	 this	

means	 that	 the	 world’s	 computing	

environment	 was	 fully	 decentralized.	 With	

the	 advent	 of	 the	 Internet	 and	 the	 world-

wide-web,	all	that	changed.	The	center	of	the	

computation	moved	to	the	web	server.	

With	 the	 recent	 re-appearance	 of	

decentralized	 databases	 such	 as	 the	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

19	

blockchain	 and	 related	 technologies	 such	 as	

IPFS,	Swarm,	and	Whisper,	 it	 is	now	possible	

to	 return	 to	 client-side,	 desktop-focused	

environment	 that	 runs	 on	 individual	

computer	using	local	sources	of	data.	

Because	 of	 the	 nature	 of	 that	 data,	 it	

seems	reasonable	 to	contemplate	a	 return	 to	

an	 era	 where	 an	 application	 behaves	 as	 if	 it	

were	entirely	stand-alone.	

Unlike	 the	 pre-web	 epoch,	 where	

connectivity	 was	 basically	 non-existent,	

desktop	 application	 may	 now	 natively	 use	

data	that	is	distributed	across	the	planet.	It	is	

as	if	the	world	now	has	the	entire	Internet	at	

its	 computing	 hands	 while	 at	 the	 same	 time	

running	 on	 a	 perfectly-secure,	 stand-alone,	

disconnected	computer.	

This	is	made	more	obvious	when	one	may	

access,	 analyze,	 and	 respond	 to	 the	

blockchain	 data	 at	 speed,	 which	 is	 what	

QuickBlocks™	provides.	

In	one	 imagined	conception	of	 the	 future	

of	 computing,	 and	given	a	 scaled,	high-speed	

blockchain	client,	we	envision	the	appearance	

of	 smart	 contracts	 that	 store	 no	 data	 at	 all.	

Data	storage	may	be	accomplished	via	IPFS	or	

Swarm.	Messages	 sent	 through	 function	calls	

and	 events	 to	 smart	 contracts	 could	

communicate	 the	 locations	 of	 these	 data,	

which	can	be	retrieved	by	QuickBlocks™.	This	

without	 having	 to	 store	 anything	 directly	 on	

the	blockchain.	

Give	the	ability	to	quickly	access	this	data	

off-chain	 in	 an	 easily	 digestible	 way,	 a	 very	

capable	 client-side-only	 desktop	 application	

could	respond	to	these	messages	as	if	the	data	

was	created	locally.	

This	 capability	 might	 one	 day	 provide	 a	

way	 to	 take	 full	 advantage	 of	 widely	

connected	 networked	 data,	 without	 the	

dangers	of	current	inherently	flawed	Internet	

security	mechanisms.	

	
Proof	of	Stake	/	Sharding	

With	the	pending	advent	of	Proof	of	Stake,	

Casper,	 and	 Sharding,	 each	 of	 which	 holds	

promise	for	a	significant	increase	in	the	speed	

and	volume	of	transactions	on	the	network,	a	

challenge	 should	 be	 anticipated	 to	 our	

system.	

The	 question	 is	 “Will	 QuickBlocks™	 be	

able	to	keep	up	when	there	are	thousands	of	

transactions	per	second?”	

In	response,	we	will	say	that	there	will	be	

at	 least	 one	 extant	 example	 of	 a	 system	 that	

can	 keep	 up	with	 the	 blockchain:	 that	 is	 the	

blockchain	itself.	We	ask,	“Why,	if	at	least	one	

piece	 of	 software	 can	 keep	 up	 with	 the	

blockchain,	can’t	we.”	

	

With	 this	 question	 in	mind,	we	 now	 end	

our	presentation.		⊡	

REFERENCES	

[1]	Wood,	Gavin,	“Ethereum:	A	Secured	

Decentralized	Generalized	Transaction	

Ledger;	EIP-150	Revision	(8bb760b	-	

2017-01-19)”	accessed	2017-01-28	at	

https://ethereum.	github.io/yellowpaper	

/paper.pdf.	

[2]	Buterin,	Vitalik,	“A	Next-Generation	Smart	

Contract	and	Decentralized	Application	

Platform”	accessed	2017-01-28	at	

https://github.com/ethereum/wiki/wiki

/White-Paper	

[3]	GitHub.	n.d.	Geth	JSON	RPC.	Accessed	07	

24,	2017.	

https://github.com/ethereum/wiki	

/wiki/JSON-RPC.	

[4]	GitHub.	n.d.	Parity	JSON	RPC.	Accessed	07	

24,	2017.	https://github.com/paritytech/	

parity/wiki/JSONRPC.	

[5]	Wikipedia.	n.d.	K-ary	Tree.	Accessed	07	

24,	2017.		https://en.wikipedia.org/wiki	

/K-ary_tree.	

[6]	QuickBlocks.	n.d.	Four	Periods	of	"The	

DAO".	Accessed	07	24,	2017.		

https://dao.quickblocks.io.	

	

Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	

	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	

and	proprietary	information.	All	rights	reserved.	

20	

	

	

	

	 1	

Appendix	A:	The	makeClass	Application	
In	this	appendix,	we	present	the	configuration	file	and	the	two	template	files	used	by	the	makeClass	
application	to	generate	C++	code	that	comprises	much	of	the	code	in	QuickBlocks.	
	
During	its	operation,	makeClass	first	reads	settings	from	the	configuration	file	and	then	calculates	a	
few	derived	values	such	as	SHORT3	from	CLASSNAME	by	removing	the	 leading	character,	setting	
the	value	 to	 lower	 case,	 and	 splitting	off	 the	 three	 left-most	 characters.	As	makeClass	 reads	each	
template	 file,	 it	 simply	 replaces	 the	 token	 values	 in	 the	 code	with	 the	 values	 represented	 in	 the	
configuration	file	or	subsequently	derived	values.	
	

This	configuration	file	describes	the	CTransaction	class	from	the	etherlib	library:	
	

class: CTransaction
fields: hash blockHash|int blockNumber|string creates|int confirmations|
 addr contractAddress|string cumulativeGasUsed|addr from|int gas|
 string gasPrice|string gasUsed|hash hash|string input|bool isError|
 bool isInternalTx|int nonce|hash r|string raw|hash s|int timeStamp|
 addr to|int transactionIndex|hash v|string value|CReceipt receipt
includes: ethtypes.h|abilib.h|receipt.h|trace.h
cIncs: #include "etherlib.h"
destination: ~/quickBlocks/src/libs/etherlib/

This	is	the	template	for	the	header	file	for	makeClass	generated	code.	Notice	the	//	EXISTING_CODE	
comments.	It	is	here	that	a	programmer	would	put	custom	code	for	the	class	in	the	generated	files.	

#pragma once
/*---
 * This source code is confidential proprietary information which is
 * Copyright (c) 1999, 2017 by Great Hill Corporation.
 * All Rights Reserved
 --/
/*
 * This file was generated with makeClass. Edit only those parts of the code inside
 * of 'EXISTING_CODE' tags.
 */
[H_INCLUDES]
//--
class [{CLASS_NAME}];
typedef SFArrayBase<[{CLASS_NAME}]> [{CLASS_NAME}]Array;
typedef SFList<[{CLASS_NAME}]*> [{CLASS_NAME}]List;
typedef CNotifyClass<const [{CLASS_NAME}]*> [{CLASS_NAME}]Notify;
typedef SFUniqueList<[{CLASS_NAME}]*> [{CLASS_NAME}]ListU;

//---
extern int sort[{PROPER}] (SFString& f1, SFString& f2, void *rr1, void *rr2);
extern int sort[{PROPER}]ByName (const void *rr1, const void *rr2);
extern int sort[{PROPER}]ByID (const void *rr1, const void *rr2);
extern int isDuplicate[{PROPER}] (const void *rr1, const void *rr2);

// EXISTING_CODE
// EXISTING_CODE

//--
class [{CLASS_NAME}] : public [{BASE_CLASS}]
{
public:
[FIELD_DEC]
public:
 [{CLASS_NAME}] (void);
 [{CLASS_NAME}] (const [{CLASS_NAME}]& [{SHORT}]);
 ~[{CLASS_NAME}] (void);
 [{CLASS_NAME}]& operator= (const [{CLASS_NAME}]& [{SHORT}]);

	 2	

 DECLARE_NODE ([{CLASS_NAME}]);

 // EXISTING_CODE
 // EXISTING_CODE

protected:
 void Clear (void);
 void Init (void);
 void Copy (const [{CLASS_NAME}]& [{SHORT}]);
 SFBool readBackLevel(SFArchive& archive);

 // EXISTING_CODE
 // EXISTING_CODE
};

//--
inline [{CLASS_NAME}]::[{CLASS_NAME}](void)
{
 Init();
 // EXISTING_CODE
 // EXISTING_CODE
}

//--
inline [{CLASS_NAME}]::[{CLASS_NAME}](const [{CLASS_NAME}]& [{SHORT}])
{
 // EXISTING_CODE
 // EXISTING_CODE
 Copy([{SHORT}]);
}

// EXISTING_CODE
// EXISTING_CODE

//--
inline [{CLASS_NAME}]::~[{CLASS_NAME}](void)
{
 Clear();
 // EXISTING_CODE
 // EXISTING_CODE
}

//--
inline void [{CLASS_NAME}]::Clear(void)
{
 // EXISTING_CODE
 // EXISTING_CODE
}

//--
inline void [{CLASS_NAME}]::Init(void)
{
 [{BASE_CLASS}]::Init();

[FIELD_SET]
 // EXISTING_CODE
 // EXISTING_CODE
}

//--
inline void [{CLASS_NAME}]::Copy(const [{CLASS_NAME}]& [{SHORT}])
{
 Clear();

 [{BASE_CLASS}]::Copy([{SHORT}]);
[FIELD_COPY]
 // EXISTING_CODE
 // EXISTING_CODE
 finishParse();
}

//--

	 3	

inline [{CLASS_NAME}]& [{CLASS_NAME}]::operator=(const [{CLASS_NAME}]& [{SHORT}])
{
 Copy([{SHORT}]);
 // EXISTING_CODE
 // EXISTING_CODE
 return *this;
}

//---
inline SFString [{CLASS_NAME}]::getValueByName(const SFString& fieldName) const
{
 // EXISTING_CODE
 // EXISTING_CODE
 return Format("[{"+toUpper(fieldName)+"}]");
}

//---
extern SFString next[{PROPER}]Chunk(const SFString& fieldIn, SFBool& force, const void *data);

//---
IMPLEMENT_ARCHIVE_ARRAY([{CLASS_NAME}]Array);
IMPLEMENT_ARCHIVE_LIST([{CLASS_NAME}]List);

//---
extern SFString next[{PROPER}]Chunk_custom(const SFString& fieldIn, SFBool& force, const void
*data);

//---
// EXISTING_CODE
// EXISTING_CODE

	

This	is	the	template	for	the	C++	implementation	file	for	makeClass	generated	code:	

/*---
 * This source code is confidential proprietary information which is
 * Copyright (c) 1999, 2017 by Great Hill Corporation.
 * All Rights Reserved
 --/
/*
 * This file was generated with makeClass. Edit only those parts of
 * the code inside of 'EXISTING_CODE' tags.
 */
#include "[{LONG}].h"
[OTHER_INCS]
//---
IMPLEMENT_NODE([{CLASS_NAME}], [{BASE_CLASS}], curVersion);

//---
void [{CLASS_NAME}]::Format(CExportContext& ctx, const SFString& fmtIn, void *data) const
{
 if (!isShowing())
 return;

 if (fmtIn.IsEmpty())
 {
 ctx << toJson();
 return;
 }

 SFString fmt = fmtIn;
 if (handleCustomFormat(ctx, fmt, data))
 return;

 [{CLASS_NAME}]Notify dn(this);
 while (!fmt.IsEmpty())
 ctx << getNextChunk(fmt, next[{PROPER}]Chunk, &dn);
}

//---

	 4	

SFString next[{PROPER}]Chunk(const SFString& fieldIn, SFBool& force, const void *data)
{
 [{CLASS_NAME}]Notify *[{SHORT}] = ([{CLASS_NAME}]Notify*)data;
 const [{CLASS_NAME}] *[{SHORT3}] = [{SHORT}]->getDataPtr();

 // Now give customized code a chance to override
 SFString ret = next[{PROPER}]Chunk_custom(fieldIn, force, data);
 if (!ret.IsEmpty())
 return ret;

 switch (tolower(fieldIn[0]))
 {
[FIELD_CASE] }

 // Finally, give the parent class a chance
 [{PARENT_CHNK}]
 if (!ret.IsEmpty())
 return ret;

 return "Field not found: [{" + fieldIn + "}]\n";
}

//---
SFBool [{CLASS_NAME}]::setValueByName(const SFString& fieldName, const SFString& fieldValue)
{
 // EXISTING_CODE
 // EXISTING_CODE

[{PARENT_SET}]
 switch (tolower(fieldName[0]))
 {
[FIELD_SETCASE] }
 return FALSE;
}

//---
void [{CLASS_NAME}]::finishParse()
{
 // EXISTING_CODE
 // EXISTING_CODE
}

//---
void [{CLASS_NAME}]::Serialize(SFArchive& archive)
{
[{PARENT_SER}]
 if (archive.isReading())
 {
[ARCHIVE_READ] finishParse();
 } else
 {
[ARCHIVE_WRITE]
 }
}

//---
void [{CLASS_NAME}]::registerClass(void)
{
 static bool been_here=false;
 if (been_here) return;
 been_here=true;

[{PARENT_REG}]
 SFInt32 fieldNum=1000;
 ADD_FIELD([{CLASS_NAME}], "schema", T_NUMBER|TS_LABEL, ++fieldNum);
 ADD_FIELD([{CLASS_NAME}], "deleted", T_BOOL|TS_LABEL, ++fieldNum);
[REGISTER_FIELDS]

 // Hide our internal fields, user can turn them on if they like
 HIDE_FIELD([{CLASS_NAME}], "schema");
 HIDE_FIELD([{CLASS_NAME}], "deleted");

	 5	

 // EXISTING_CODE
 // EXISTING_CODE
}

//---
int sort[{PROPER}](const SFString& f1, const SFString& f2, const void *rr1, const void *rr2)
{
 [{CLASS_NAME}] *g1 = ([{CLASS_NAME}]*)rr1;
 [{CLASS_NAME}] *g2 = ([{CLASS_NAME}]*)rr2;

 SFString v1 = g1->getValueByName(f1);
 SFString v2 = g2->getValueByName(f1);
 SFInt32 s = v1.Compare(v2);
 if (s || f2.IsEmpty())
 return (int)s;

 v1 = g1->getValueByName(f2);
 v2 = g2->getValueByName(f2);
 return (int)v1.Compare(v2);
}
int sort[{PROPER}]ByName(const void *rr1, const void *rr2) { return
sort[{PROPER}]("[{NAME_SORT1}]", "[{NAME_SORT2}]", rr1, rr2); }
int sort[{PROPER}]ByID (const void *rr1, const void *rr2) { return
sort[{PROPER}]("[{ID_SORT1}]", "[{ID_SORT2}]", rr1, rr2); }

//---
SFString next[{PROPER}]Chunk_custom(const SFString& fieldIn, SFBool& force, const void *data)
{
 [{CLASS_NAME}]Notify *[{SHORT}] = ([{CLASS_NAME}]Notify*)data;
 const [{CLASS_NAME}] *[{SHORT3}] = [{SHORT}]->getDataPtr();
 switch (tolower(fieldIn[0]))
 {
 // EXISTING_CODE
 // EXISTING_CODE
 default:
 break;
 }

#pragma unused([{SHORT}])
#pragma unused([{SHORT3}])

 return EMPTY;
}

//---
SFBool [{CLASS_NAME}]::handleCustomFormat(CExportContext& ctx, const SFString& fmtIn, void
*data) const
{
 // EXISTING_CODE
 // EXISTING_CODE
 return FALSE;
}

//---
SFBool [{CLASS_NAME}]::readBackLevel(SFArchive& archive)
{
 SFBool done=FALSE;
 // EXISTING_CODE
 // EXISTING_CODE
 return done;
}

//---
// EXISTING_CODE
// EXISTING_CODE

	

	 	

	 6	

Appendix	B:	Display	Strings	
	
What	is	a	display	string?	
	
A	display	string	 is	a	 regular	 ‘c’	 character	string	made	up	of	plain	 text	and	 field	 tokens.	 Into	 these	
field	tokens	a	class	instance’s	field	values	are	inserted	on-the-fly	as	the	string	is	displayed.	Display	
strings	 are	 used	 in	many	 places	 in	 QuickBlocks:	 during	 the	 rendering	 of	 JSON,	 tab-delimited,	 or	
comma-separated	data	to	file	or	the	screen,	while	generating	C++	implementation	and	header	files	
in	makeClass,	and	even	when	retreiving	arbirtrary	name-specifiied	values	from	a	class.	
	
Customizing	display	strings	
	
The	full	power	of	display	strings	becomes	apparent	when	one	starts	customizing	them.	Each	class	
derived	 from	 CBaseClass	 must	 implement	 a	 pure	 virtual	 function	 called	 Format	 which	 takes	 as	
parameter	 a	 display	 string.	 An	 empty	 display	 string	 implies	 that	 JSON	 output	 is	 desired,	 but	 the	
display	 string	 may	 be	 specified	 in	 any	 format.	 For	 example	 “[The	 {p:FROM}	 field	 holds	 value	
][{FROM}],”	would	display	“The	from	field	holds	value	account_12”	if	the	from	field	held	a	value	of	
‘account	12,’	but	would	display	nothing	if	the	‘from’	were	empty.	
	
Using	display	strings	
	
Display	strings	consist	of	three	parts:	clear	text,	optional	text	and	field	tokens.	
	
Field	 tokens	 must	 exist,	 with	 no	 intervening	 spaces,	 inside	 of	 squiggle	 brackets	 {}	 and	 must	
correspond	 to	 one	 of	 the	 recognized	 field	 names	 for	 the	 class.	 There	 can	 be	 no	 spaces	 or	 other	
characters	between	the	squiggles	and	the	token	name.	For	example	{SUBJECT}	is	a	valid	field	token,	
{text	SUBJECT}	is	not.	
	
Each	 {fieldToken}	 must	 further	 exist	 inside	 of	 square	 brackets	 [].	 Optional	 text	 may	 appear	 on	
either	side	of	 the	{fieldToken}	 inside	of	 the	square	brackets.	Optional	 text	 is	displayed	only	 if	 the	
value	 of	 the	 field	 is	 non-empty.	 Optional	 text,	 as	 the	 name	 implies,	 need	 not	 exist.	 The	 square	
brackets	themselves	must	exist.	
	
Clear	 text	may	 exist	 in	 a	 display	 string	 outside	 of	 the	 square	 brackets	 eitehr	 before	 or	 after	 the	
opening	or	closing	bracket	respectively.	Clear	text	need	not	exist,	but	if	it	does,	it	is	copied	directly	
to	the	display	unaltered.	
	
A	simple	example	
	
As	an	example,	the	display	string:	
	

	Clear	[Optional	{CATEGORY}	Optional]		Clear	
	
would	render	as	'Clear	Optional	Finance	Optional	Clear'	if	the	category	field	evaluates	to	the	value	
'Finance'.	 If	 the	 category	 field	 is	 empty	 the	 string	 would	 render	 as	 'Clear	 Clear'	 (text	 inside	 the	
square	bracket	is	not	rendered	if	the	field	value	is	empty).	
	
Prompt	tokens	
	

	 7	

Notwithstanding	 the	paragraph	 above	 you	may	 insert	 the	 text	 'p:'	 immediately	 after	 the	 opening	
squiggle	and	just	prior	to	the	field	name	to	turn	the	token	into	a	prompt	token.	
	
A	non-prompt	(or	regular)	token	is	resolved	to	the	value	of	the	field.	A	prompt	token	is	resolved	to	
the	 name	 of	 the	 field.	 For	 example	 the	 token	 {FROM}	 evaluates	 to	 the	 value	 of	 the	 from	 field	
whereas	 the	 token	 {p:FROM}	evaluates	 to	 the	prompt	 for	 the	 field.	 (The	names	of	 a	 class’s	 fields	
may	be	customized	in	a	configuration	file.	Perhaps	the	programmer	wishes	to	rename	the	'From'	to	
‘Spender’	for	his/her	particular	application.)	
	
An	extended	example	
	
A	display	string	such	as	this	
	

					<table>	
					[<tr><td>{p:FROM}:	</td><td>][<tr><td>{FROM}</td></tr>]	
					[<tr><td>{p:AMOUNT}:	</td><td>][<tr><td>{AMOUNT}	ether</td></tr>]	
					</table>	

	
would	render	to	an	HTML	browser	as	this	
	

From:	 	 Account	12	
Value:	 	 100	ether	

	
if	the	‘from’	field	evaluates	to	a	value	of	Account	12,	the	amount	field	has	been	renamed	to	“Value,”	
and	the	‘amount’	field	holds	a	value	of	100	ether.	The	same	class	would	display	
	

From:	 	 	 Account	12	
	
if	the	amount	field	were	empty.	

	 	

	 8	

Appendix	C:	The	makeClass	Configuration	Files	
In	 this	 appendix,	we	present	 the	 configuration	 file	of	 all	 automatically	 created	 code,	 including	all	
classes	 in	 the	 tokenlib	 library,	 and	 nine	 of	 the	 twelve	 classes	 in	 the	 etherlib	 library.	 Each	
configuration	file	is	presented	without	further	comment.	
	

For	the	abilib	library	
	
====================	abi.txt	==========================	
class:	 	 	 	 	 	 	 	 CAbi	
fields:		 	 	 	 	 	 	 CFunctionArray	abiByName|CFunctionArray	abiByEncoding	
includes:		 	 	 	 	 function.h|parameter.h	
destination:		 	 	 ~/quickBlocks/src/libs/abilib/	
	
====================	function.txt	==========================	
class:	 	 	 	 	 	 	 	 CFunction	
fields:		 	 	 	 	 	 	 string	name|string	type|bool	indexed|bool	anonymous|bool	constant|	
	 	 	 	 	 	 	 	 	 	 	 	 bool	payable|string	encoding|CParameterArray	inputs|CParameterArray	outputs	
includes:		 	 	 	 	 utillib.h|parameter.h	
destination:		 	 	 ~/quickBlocks/src/libs/abilib/	
	
====================	parameter.txt	==========================	
class:	 	 	 	 	 	 	 	 CParameter	
fields:		 	 	 	 	 	 	 string	name|string	type|bool	isPointer|bool	isArray	
includes:		 	 	 	 	 utillib.h	
destination:		 	 	 ~/quickBlocks/src/libs/abilib/	
	

For	the	etherlib	library	
	
====================	account.txt	==========================	
class:	 	 	 	 	 	 	 	 CAccount	
fields:		 	 	 	 	 	 	 addr	addr|string	header|string	displayString|bool	pageSize|int	lastPage|	
	 	 	 	 	 	 	 	 	 	 	 	 int	lastBlock|int	nVisible|CTransactionArray	transactions	
includes:		 	 	 	 	 ethtypes.h|abilib.h|transaction.h	
destination:		 	 	 ~/quickBlocks/src/libs/etherlib/	
	
====================	block.txt	==========================	
class:	 	 	 	 	 	 	 	 CBlock	
fields:		 	 	 	 	 	 	 addr	author|string	difficulty|string	extraData|string	gasLimit|string	gasUsed|	
	 	 	 	 	 	 	 	 	 	 	 	 hash	hash|string	logsBloom|addr	miner|hash	mixHash|string	nonce|	
	 	 	 	 	 	 	 	 	 	 	 	 string	number|hash	parentHash|string	receiptRoot|string	receiptsRoot|	
	 	 	 	 	 	 	 	 	 	 	 	 SFStringArray	sealFields|string	sha3Uncles|string	size|string	stateRoot|	
	 	 	 	 	 	 	 	 	 	 	 	 string	timestamp|string	totalDifficulty|CTransactionArray	transactions|	
	 	 	 	 	 	 	 	 	 	 	 	 string	transactionsRoot|SFStringArray	uncles	
includes:		 	 	 	 	 ethtypes.h|abilib.h|transaction.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/etherlib/	
	
	
	

	 9	

====================	blockchain.txt	==========================	
class:	 	 	 	 	 	 	 	 CBlockChain	
fields:		 	 	 	 	 	 	 CBlockArray	blocks	
includes:		 	 	 	 	 block.h|etherlib.h	
cIncs:		 	 	 	 	 	 	 #include	"account.h"	
destination:		 	 	 ~/quickBlocks/src/libs/etherlib/	
	
====================	pricequote.txt	==========================	
class:	 	 	 	 	 	 	 	 CPriceQuote	
fields:		 	 	 	 	 	 	 int	timeStamp|float	open|float	high|float	low|float	close|float	quoteVolume|	
	 	 	 	 	 	 	 	 	 	 	 	 float	volume|float	weightedAvg	
includes:		 	 	 	 	 ethtypes.h|abilib.h	
destination:		 	 	 ~/quickBlocks/src/libs/etherlib/	
	
====================	receipt.txt	==========================	
class:	 	 	 	 	 	 	 	 CReceipt	
fields:		 	 	 	 	 	 	 hash	blockHash|int	blockNumber|addr	contractAddress|int	cumulativeGasUsed|	
	 	 	 	 	 	 	 	 	 	 	 	 addr	from|int	gasUsed|CLogEntryArray	logs|string	logsBloom|string	root|	
	 	 	 	 	 	 	 	 	 	 	 	 addr	to|hash	transactionHash|int	transactionIndex	
includes:		 	 	 	 	 ethtypes.h|abilib.h|logentry.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/etherlib/	
	
====================	trace.txt	==========================	
class:	 	 	 	 	 	 	 	 CTrace	
fields:		 	 	 	 	 	 	 int	gas|string	returnValue|CStructLogArray	structLogs|CStructLog	last	
includes:		 	 	 	 	 ethtypes.h|abilib.h|structlog.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/etherlib/	
	
====================	transaction.txt	==========================	
class:	 	 	 	 	 	 	 	 CTransaction	
fields:		 	 	 	 	 	 	 hash	blockHash|int	blockNumber|string	creates|int	confirmations|	
	 	 	 	 	 	 	 	 	 	 	 	 addr	contractAddress|string	cumulativeGasUsed|addr	from|int	gas|	
	 	 	 	 	 	 	 	 	 	 	 	 string	gasPrice|string	gasUsed|hash	hash|string	input|bool	isError|	
	 	 	 	 	 	 	 	 	 	 	 	 bool	isInternalTx|int	nonce|hash	r|string	raw|hash	s|int	timeStamp|addr	to|	
	 	 	 	 	 	 	 	 	 	 	 	 int	transactionIndex|hash	v|string	value|CReceipt	receipt|CTrace	trace	
includes:		 	 	 	 	 ethtypes.h|abilib.h|receipt.h|trace.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/etherlib/	
	

For	the	tokenlib	library	
	
====================	approvalevent.txt	==========================	
class:	 	 	 	 	 	 	 	 CApprovalEvent	
baseClass:		 	 	 	 CLogEntry	
fields:		 	 	 	 	 	 	 address	_owner|address	_spender|uint256	_amount|	
includes:		 	 	 	 	 logentry.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	

	 10	

	
====================	approve.txt	==========================	
class:	 	 	 	 	 	 	 	 CApprove	
baseClass:		 	 	 	 CTransaction	
fields:		 	 	 	 	 	 	 address	_spender|uint256	_amount|	
includes:		 	 	 	 	 transaction.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	
====================	createdtokenevent.txt	==========================	
class:	 	 	 	 	 	 	 	 CCreatedTokenEvent	
baseClass:		 	 	 	 CLogEntry	
fields:		 	 	 	 	 	 	 address	to|uint256	amount|	
includes:		 	 	 	 	 logentry.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	
====================	createtokenproxy.txt	==========================	
class:	 	 	 	 	 	 	 	 CCreateTokenProxy	
baseClass:		 	 	 	 CTransaction	
fields:		 	 	 	 	 	 	 address	_tokenHolder|	
includes:		 	 	 	 	 transaction.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	
====================	transfer.txt	==========================	
class:	 	 	 	 	 	 	 	 CTransfer	
baseClass:		 	 	 	 CTransaction	
fields:		 	 	 	 	 	 	 address	_to|uint256	_value|	
includes:		 	 	 	 	 transaction.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	
====================	transferevent.txt	==========================	
class:	 	 	 	 	 	 	 	 CTransferEvent	
baseClass:		 	 	 	 CLogEntry	
fields:		 	 	 	 	 	 	 address	_from|address	_to|uint256	_amount|	
includes:		 	 	 	 	 logentry.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	
====================	transferfrom.txt	==========================	
class:	 	 	 	 	 	 	 	 CTransferFrom	
baseClass:		 	 	 	 CTransaction	
fields:		 	 	 	 	 	 	 address	_from|address	_to|uint256	_value|	
includes:		 	 	 	 	 transaction.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	
	

	 11	

====================	deffunction.txt	==========================	
class:	 	 	 	 	 	 	 	 CDefFunction	
baseClass:		 	 	 	 CTransaction	
fields:		 	 	 	 	 	 	 string	_str|	
includes:		 	 	 	 	 transaction.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	
====================	unknown.txt	==========================	
class:	 	 	 	 	 	 	 	 CUnknown	
baseClass:		 	 	 	 CTransaction	
fields:		 	 	 	 	 	 	 string	_str|	
includes:		 	 	 	 	 transaction.h	
cIncs:		 	 	 	 	 	 	 #include	"etherlib.h"	
destination:		 	 	 ~/quickBlocks/src/libs/tokenlib/	
	

	 	

	 12	

Appendix	D:	Classes	in	the	etherlib	libraries	
	
Here	we	present	the	various	classes	in	the	etherlib	library:	
	

class	CAccount	:	public	CBaseNode	
{	
public:	
	 	 SFAddress		 addr;	
	 	 SFString	 	 	 header;	
	 	 SFString	 	 	 displayString;	
	 	 SFBool	 	 	 	 pageSize;	
	 	 SFInt32	 	 	 lastPage;	
	 	 SFInt32	 	 	 lastBlock;	
	 	 SFInt32	 	 	 nVisible;	
	 	 CTransactionArray	transactions;	
	 	 …	
};	
	

class	CBlock	:	public	CBaseNode	
{	
public:	
	 	 SFAddress	author;	
	 	 SFString	difficulty;	
	 	 SFString	extraData;	
	 	 SFString	gasLimit;	
	 	 SFString	gasUsed;	
	 	 SFHash	hash;	
	 	 SFString	logsBloom;	
	 	 SFAddress	miner;	
	 	 SFHash	mixHash;	
	 	 SFString	nonce;	
	 	 SFString	number;	
	 	 SFHash	parentHash;	
	 	 SFString	receiptRoot;	
	 	 SFString	receiptsRoot;	
	 	 SFStringArray	sealFields;	
	 	 SFString	sha3Uncles;	
	 	 SFString	size;	
	 	 SFString	stateRoot;	
	 	 SFString	timestamp;	
	 	 SFString	totalDifficulty;	
	 	 CTransactionArray	transactions;	
	 	 SFString	transactionsRoot;	
	 	 SFStringArray	uncles;	
	 	 …	
};	
	
	
	

	 13	

	

class	CBlockChain	:	public	CBaseNode	
{	
public:	
	 	 CBlockArray	blocks;	
	 	 …	
};	
	

class	CLogEntry	:	public	CBaseNode	
{	
public:	
	 	 SFAddress	address;	
	 	 SFHash	blockHash;	
	 	 SFInt32	blockNumber;	
	 	 SFString	data;	
	 	 SFInt32	logIndex;	
	 	 SFStringArray	topics;	
	 	 SFHash	transactionHash;	
	 	 SFInt32	transactionIndex;	
	 	 …	
};	
	

class	CMiniBlock	
{	
public:	
	 	 SFUint32	number;	
	 	 SFUint32	timestamp;	
	 	 SFUint32	firstTrans;	
	 	 SFUint32	nTrans;	
	 	 SFUint32	gasLimit;	
	 	 …	
};	
	

class	CMiniTrans	
{	
public:	
	 	 SFUint32		index;	
	 	 bool						isError;	
	 	 SFUint32		gasPrice;	
	 	 SFUint32		gasUsed;	
	 	 SFUint32		gas;	
	 	 char						from	[41];	
	 	 char						to			[41];	
	 	 char						value[41];	
	 	 …	
};	
	
	
	

	 14	

	

class	CPriceQuote	:	public	CBaseNode	
{	
public:	
	 	 SFInt32	timeStamp;	
	 	 float	open;	
	 	 float	high;	
	 	 float	low;	
	 	 float	close;	
	 	 float	quoteVolume;	
	 	 float	volume;	
	 	 float	weightedAvg;	
	 	 …	
};	
	

class	CReceipt	:	public	CBaseNode	
{	
public:	
	 	 SFHash	blockHash;	
	 	 SFInt32	blockNumber;	
	 	 SFAddress	contractAddress;	
	 	 SFInt32	cumulativeGasUsed;	
	 	 SFAddress	from;	
	 	 SFInt32	gasUsed;	
	 	 CLogEntryArray	logs;	
	 	 SFString	logsBloom;	
	 	 SFString	root;	
	 	 SFAddress	to;	
	 	 SFHash	transactionHash;	
	 	 SFInt32	transactionIndex;	
	 	 …	
};	
	

class	IPCSocket	
{	
public:	
	 	 FILE	*m_fp;	
	 	 SFString	m_path;	
	 	 int	m_socket;	
	 	 …	
};	
	

class	RPCSession	
{	
public:	
	 	 IPCSocket	m_ipcSocket;	
	 	 size_t	m_rpcSequence;	
	 	 …	
};	

	 15	

	

class	CRPCResult	:	public	CBaseNode	
{	
public:	
	 	 SFString	jsonrpc;	
	 	 SFString	result;	
	 	 SFString	id;	
	 	 …	
};	
	

class	CStructLog	:	public	CBaseNode	
{	
public:	
	 	 SFInt32	depth;	
	 	 SFBool	error;	
	 	 SFInt32	gas;	
	 	 SFInt32	gasCost;	
	 	 SFStringArray	memory;	
	 	 SFString	op;	
	 	 SFInt32	pc;	
	 	 SFStringArray	stack;	
	 	 SFStringArray	storage;	
	 	 …	
};	
	

class	CTrace	:	public	CBaseNode	
{	
public:	
	 	 SFInt32	gas;	
	 	 SFString	returnValue;	
	 	 CStructLogArray	structLogs;	
	 	 CStructLog	last;	
	 	 …	
};	
	

class	CTransaction	:	public	CBaseNode	
{	
public:	
	 	 SFHash	blockHash;	
	 	 SFInt32	blockNumber;	
	 	 SFString	creates;	
	 	 SFInt32	confirmations;	
	 	 SFAddress	contractAddress;	
	 	 SFString	cumulativeGasUsed;	
	 	 SFAddress	from;	
	 	 SFInt32	gas;	
	 	 SFString	gasPrice;	
	 	 SFString	gasUsed;	
	 	 SFHash	hash;	

	 16	

	 	 SFString	input;	
	 	 SFBool	isError;	
	 	 SFBool	isInternalTx;	
	 	 SFInt32	nonce;	
	 	 SFHash	r;	
	 	 SFString	raw;	
	 	 SFHash	s;	
	 	 SFInt32	timeStamp;	
	 	 SFAddress	to;	
	 	 SFInt32	transactionIndex;	
	 	 SFHash	v;	
	 	 SFString	value;	
	 	 CReceipt	receipt;	
	 	 CTrace	trace;	
	 	 …	
};	
	

class	CWebAPI	
{	
private:	
	 	 SFString	key;	
	 	 SFString	provider;	
	 	 SFString	url;	
	 	 …	
};	
	
	
	

	
17
	

Ap
pe

nd
ix	
E:
	T
he

	fo
rE
ve
ry
	F
un

ct
io
ns
	

Th
e	e
th
er
lib
	lib

ra
ry
	co
nt
ain

s	a
	n
um

be
r	o
f	‘f
or
Ev
er
y’	
fu
nc
tio
ns
	w
hi
ch
	ai
d	i
n	
th
e	t
ra
nv
er
sa
l	o
f	t
he
	lo
ca
lly
	st
or
ed
	bi
na
ry
	an
d	a
rr
ay
	da
ta
.	H
er
e	

is	
a	f
ul
l	li
st	
of
	th
os
e	f
un
ct
io
ns
.	

	
Th
is
	fi
rs
t	f
ew

	fo
rE
ve
ry
	fu
nc
ti
on
s	
tr
av
er
se
	fu
ll	
bl
oc
ks
	w
it
h	
on
e	
or
	m
or
e	
tr
an
sa
ct
io
ns
	th
at
	r
es
id
e	
on
	d
is
c:
	

	 		
		

bo
ol
		f
or
Ev
er
yB
lo
ck
On
Di
sc
				
				
				
			

		
(B
LO
CK
VI
SI
TF
UN

C	
fu
nc
,			
				
				
vo
id
	*d
at
a,	
SF
Ui
nt
32
	st
ar
t,	S
FU
in
t3
2	c
ou
nt
);	

		
		

bo
ol
		f
or
Ev
er
yE
m
pt
yB
lo
ck
On
Di
sc
		
		

(B
LO
CK
VI
SI
TF
UN

C	
fu
nc
,			
				
				
vo
id
	*d
at
a,	
SF
Ui
nt
32
	st
ar
t,	S
FU
in
t3
2	c
ou
nt
);	

		
		

bo
ol
		f
or
Ev
er
yN
on
Em

pt
yB
lo
ck
On
Di
sc
		(
BL
OC
KV
IS
IT
FU
NC
	fu
nc
,			
				
				
vo
id
	*d
at
a,	
SF
Ui
nt
32
	st
ar
t,	S
FU
in
t3
2	c
ou
nt
);	

	 Th
es
e	
tw
o	
fu
nc
ti
on
s	
op
er
at
e	
on
	a
	c
ir
cu
m
sc
ri
be
d	
ve
rs
io
n	
of
	th
e	
bl
oc
kc
ha
in
	d
at
a	
w
hi
ch
	r
es
id
es
	in
	m
em

or
y	
du
ri
ng
	th
e	
tr
av
er
sa
l:	

	 		
		

bo
ol
		f
or
Ev
er
yM

in
iB
lo
ck
In
M
em

or
y	
		

(M
IN
IB
LO
CK
VI
SI
TF
UN

C	
fu
nc
,	v
oi
d	*
da
ta
,	S
FU
in
t3
2	s
ta
rt,
	SF
Ui
nt
32
	co
un
t);
	

		
		

bo
ol
		f
or
Ev
er
yF
ul
lB
lo
ck
In
M
em

or
y		

		
(B
LO
CK
VI
SI
TF
UN

C	
fu
nc
,			
				
				
vo
id
	*d
at
a,	
SF
Ui
nt
32
	st
ar
t,	S
FU
in
t3
2	c
ou
nt
);	

	 Th
es
e	
fe
w
	fu
nc
ti
on
s	
ig
no
re
	b
lo
ck
s	
an
d	
si
m
pl
y	
tr
av
er
se
	th
e	
tr
an
sa
ct
io
ns
	d
ir
ec
tl
y.
	N
ot
e,
	o
nl
y	
m
in
iT
ra
ns
ac
ti
on
	v
er
si
on
	o
f	t
he
	d
at
a	
	

ar
e	
av
ai
la
be
	h
er
e:
	

	 		
		

bo
ol
		f
or
Ev
er
yT
ra
ns
ac
tio
n	
		

		
		

		
(M
IN
IT
RA
NS
VI
SI
TF
UN

C	
fu
nc
,		v
oi
d	*
da
ta
,	S
FU
in
t3
2	s
ta
rt,
	SF
Ui
nt
32
	co
un
t);
	

		
		

bo
ol
		f
or
Ev
er
yT
ra
ns
ac
tio
nT
o	
		

		
		

(M
IN
IT
RA
NS
VI
SI
TF
UN

C	
fu
nc
,		v
oi
d	*
da
ta
,	S
FU
in
t3
2	s
ta
rt,
	SF
Ui
nt
32
	co
un
t);
	

		
		

bo
ol
		f
or
Ev
er
yT
ra
ns
ac
tio
nF
ro
m
		
		

	(
M
IN
IT
RA
NS
VI
SI
TF
UN

C	
fu
nc
,		v
oi
d	*
da
ta
,	S
FU
in
t3
2	s
ta
rt,
	SF
Ui
nt
32
	co
un
t);
	

	

